Concept explainers
a)
To determine: The optimal plan using the transportation method.
Introduction: Aggregate planning using transportation method helps to attain minimum cost using the optimal plan. The major advantage of transportation method is to achieve the optimal solution using optimal plans.
a)

Answer to Problem 17P
The optimal plan using the transportation method has been developed.
Explanation of Solution
Given information:
The following information has been given:
Quarter |
| Regular time | Overtime | Subcontract |
1 | 500 | 400 | 80 | 100 |
2 | 750 | 400 | 80 | 100 |
3 | 900 | 800 | 160 | 100 |
4 | 450 | 400 | 80 | 100 |
Initial inventory is given as 250 units, regular time cost is $1 per unit, overtime cost is $1.50 per unit, and subcontract cost is $2 per unit. Carrying cost is given as $0.5 per unit per quarter and backorder cost is $0.5 per unit per quarter. Initial inventory would incur $0.2 per unit.
Develop optimal plan using transportation model:
Develop cost matrix:
Cost matrix | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Ending inventory | Supply |
Beginning inventory | 0.2 | 0.4 | 0.6 | 0.8 | 1 | 250 |
Regular time 1 | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 400 |
Over time 1 | 1.5 | 1.7 | 1.9 | 2.1 | 2.3 | 80 |
Subcontract 1 | 2 | 2.2 | 2.4 | 2.6 | 2.8 | 100 |
Regular time 1 | 1.5 | 1 | 1.2 | 1.4 | 1.6 | 400 |
Over time 1 | 2 | 1.5 | 1.7 | 1.9 | 2.1 | 80 |
Subcontract 1 | 2.5 | 2 | 2.2 | 2.4 | 2.6 | 100 |
Regular time 1 | 2 | 1.5 | 1 | 1.2 | 1.4 | 400 |
Over time 1 | 2.5 | 2 | 1.5 | 1.7 | 1.9 | 80 |
Subcontract 1 | 3 | 2.5 | 2 | 2.2 | 2.4 | 100 |
Regular time 1 | 2.5 | 2 | 1.5 | 1 | 1.2 | 400 |
Over time 1 | 3 | 2.5 | 2 | 1.5 | 1.7 | 80 |
Subcontract 1 | 3.5 | 3 | 2.5 | 2 | 2.2 | 100 |
Demand | 500 | 750 | 900 | 450 | 2570 | |
2600 |
Excel worksheet to generate the above table:
Develop optimal plan:
Optimal plan | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Ending inventory | Dummy |
Beginning inventory | 100 | 150 | ||||
Regular time 1 | 400 | |||||
Over time 1 | 80 | |||||
Subcontract 1 | 100 | |||||
Regular time 1 | 400 | |||||
Over time 1 | 80 | |||||
Subcontract 1 | 100 | |||||
Regular time 1 | 800 | |||||
Over time 1 | 40 | 100 | 20 | |||
Subcontract 1 | 100 | |||||
Regular time 1 | 400 | |||||
Over time 1 | 50 | 30 | ||||
Subcontract 1 | 100 | |||||
Demand | 500 | 750 | 900 | 450 |
The given demand and supply should be separated and the remaining supply and demand should be used as a dummy value.
b)
To determine: The total cost of the optimal plan.
Introduction: Aggregate planning using transportation method helps to attain minimum cost using the optimal plan. The major advantage of transportation method is to achieve the optimal solution using optimal plans.
b)

Answer to Problem 17P
The optimal cost of the plan is $2,641.
Explanation of Solution
Given information:
The following information has been given:
Quarter | Forecast (units) | Regular time | Overtime | Subcontract |
1 | 500 | 400 | 80 | 100 |
2 | 750 | 400 | 80 | 100 |
3 | 900 | 800 | 160 | 100 |
4 | 450 | 400 | 80 | 100 |
Initial inventory is given as 250 units, regular time cost is $1 per unit, overtime cost is $1.50 per unit, and subcontract cost is $2 per unit. Carrying cost is given as $0.5 per unit per quarter and backorder cost is $0.5 per unit per quarter. Initial inventory would incur $0.2 per unit.
Develop optimal plan using transportation model:
Develop cost matrix:
Cost matrix | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Ending inventory | Supply |
Beginning inventory | 0.2 | 0.4 | 0.6 | 0.8 | 1 | 250 |
Regular time 1 | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 400 |
Over time 1 | 1.5 | 1.7 | 1.9 | 2.1 | 2.3 | 80 |
Subcontract 1 | 2 | 2.2 | 2.4 | 2.6 | 2.8 | 100 |
Regular time 1 | 1.5 | 1 | 1.2 | 1.4 | 1.6 | 400 |
Over time 1 | 2 | 1.5 | 1.7 | 1.9 | 2.1 | 80 |
Subcontract 1 | 2.5 | 2 | 2.2 | 2.4 | 2.6 | 100 |
Regular time 1 | 2 | 1.5 | 1 | 1.2 | 1.4 | 400 |
Over time 1 | 2.5 | 2 | 1.5 | 1.7 | 1.9 | 80 |
Subcontract 1 | 3 | 2.5 | 2 | 2.2 | 2.4 | 100 |
Regular time 1 | 2.5 | 2 | 1.5 | 1 | 1.2 | 400 |
Over time 1 | 3 | 2.5 | 2 | 1.5 | 1.7 | 80 |
Subcontract 1 | 3.5 | 3 | 2.5 | 2 | 2.2 | 100 |
Demand | 500 | 750 | 900 | 450 | 2570 | |
2600 |
Excel worksheet to generate the above table:
Develop optimal plan:
Optimal plan | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Ending inventory | Dummy |
Beginning inventory | 100 | 150 | ||||
Regular time 1 | 400 | |||||
Over time 1 | 80 | |||||
Subcontract 1 | 100 | |||||
Regular time 1 | 400 | |||||
Over time 1 | 80 | |||||
Subcontract 1 | 100 | |||||
Regular time 1 | 800 | |||||
Over time 1 | 40 | 100 | 20 | |||
Subcontract 1 | 100 | |||||
Regular time 1 | 400 | |||||
Over time 1 | 50 | 30 | ||||
Subcontract 1 | 100 | |||||
Demand | 500 | 750 | 900 | 450 |
The given demand and supply should be splitted and the remaining supply and demand should be used as a dummy value.
Calculate the total optimal cost:
It is calculated by adding the multiple of values in the optimal plan table and the value in the cost matrix to the respective value.
Hence, the total optimal cost is $2,641.
c)
To determine: The number of units remained unused in regular time capacity.
Introduction: Aggregate planning using transportation method helps to attain minimum cost using the optimal plan. The major advantage of transportation method is to achieve the optimal solution using optimal plans.
c)

Answer to Problem 17P
No, the regular time capacity remains unused.
Explanation of Solution
Given information:
The following information has been given:
Quarter | Forecast (units) | Regular time | Overtime | Subcontract |
1 | 500 | 400 | 80 | 100 |
2 | 750 | 400 | 80 | 100 |
3 | 900 | 800 | 160 | 100 |
4 | 450 | 400 | 80 | 100 |
Initial inventory is given as 250 units, regular time cost is $1 per unit, overtime cost is $1.50 per unit, and subcontract cost is $2 per unit. Carrying cost is given as $0.5 per unit per quarter and backorder cost is $0.5 per unit per quarter. Initial inventory would incur $0.2 per unit.
Develop optimal plan:
Optimal plan | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Ending inventory | Dummy |
Beginning inventory | 100 | 150 | ||||
Regular time 1 | 400 | |||||
Over time 1 | 80 | |||||
Subcontract 1 | 100 | |||||
Regular time 1 | 400 | |||||
Over time 1 | 80 | |||||
Subcontract 1 | 100 | |||||
Regular time 1 | 800 | |||||
Over time 1 | 40 | 100 | 20 | |||
Subcontract 1 | 100 | |||||
Regular time 1 | 400 | |||||
Over time 1 | 50 | 30 | ||||
Subcontract 1 | 100 | |||||
Demand | 500 | 750 | 900 | 450 |
The given demand and supply should be separated and the remaining supply and demand should be used as a dummy value.
Determine whether the regular time capacity remain unused:
From the above table, it is clear that no regular time capacity remains unused. All the regular time capacity has been used in respective quarters.
d)
To determine: The extent of backordering in units and dollars.
Introduction: Aggregate planning using transportation method helps to attain minimum cost using the optimal plan. The major advantage of transportation method is to achieve the optimal solution using optimal plans.
d)

Answer to Problem 17P
The total unit of the backordered is 40 units and the total cost of producing the backorders are $20.
Explanation of Solution
Given information:
The following information has been given:
Quarter | Forecast (units) | Regular time | Overtime | Subcontract |
1 | 500 | 400 | 80 | 100 |
2 | 750 | 400 | 80 | 100 |
3 | 900 | 800 | 160 | 100 |
4 | 450 | 400 | 80 | 100 |
Initial inventory is given as 250 units, regular time cost is $1 per unit, overtime cost is $1.50 per unit, and subcontract cost is $2 per unit. Carrying cost is given as $0.5 per unit per quarter and backorder cost is $0.5 per unit per quarter. Initial inventory would incur $0.2 per unit.
Develop optimal plan:
Optimal plan | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Ending inventory | Dummy |
Beginning inventory | 100 | 150 | ||||
Regular time 1 | 400 | |||||
Over time 1 | 80 | |||||
Subcontract 1 | 100 | |||||
Regular time 1 | 400 | |||||
Over time 1 | 80 | |||||
Subcontract 1 | 100 | |||||
Regular time 1 | 800 | |||||
Over time 1 | 40 | 100 | 20 | |||
Subcontract 1 | 100 | |||||
Regular time 1 | 400 | |||||
Over time 1 | 50 | 30 | ||||
Subcontract 1 | 100 | |||||
Demand | 500 | 750 | 900 | 450 |
The given demand and supply should be separated and the remaining supply and demand should be used as a dummy value.
Determine the extent backordering in units and dollars:
The colored cell is the only cell in the optimal plan, which is used for backordering. Hence, the backordering in units is 40 units. It is given that backorder cost is $0.50 per unit per quarter.
Hence, the total unit backordered is 40 units and the total costs of producing the backorders are $20.
Want to see more full solutions like this?
Chapter 13 Solutions
PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
- Women who ask for what they want in negotiation are less well-liked than women who do not self-advocate. However, nonassertive, other-advocating women suffer a leadership backlash and are regarded as less competent because their behavior is regarded to be _____ and _____. A. high-negative feminine; low-positive masculine B. high-positive feminine; high-positive masculine C. high-negative masculine; low-negative feminine D. low-positive masculine; low-positive femininearrow_forwardThere are five most recognized personality traits that can reliably be measured and predict negotiator behavior in a number of different situations. All of the following are one of those "Big 5" personality traits except _____. A. conscientiousness B. introversion C. agreeableness D. openness to experiencearrow_forwardWith regard to reputation in negotiation, negotiators who use adversarial, stubborn, and ethically questionable behavior often have the effect of _____. A. improving their business relationships B. decreasing their effectiveness as a negotiator C. improving their business relationships D. decreasing their group statusarrow_forward
- When it comes to assertiveness, there is only a modest link between negotiators' self-views and how the counterparty sees them. Many negotiators come away from a negotiation thinking they came on too strong with the counterparty. The _____ refers to the fact that negotiators believe they are coming on too strong with the counterparty, but they actually are not. A. Collective trap illusion B. Attribution error C. Aggressive anchoring bias D. Line-crossing illusionarrow_forwardAs you think about the issue of using chatbots in contract negotiations, consider whether other facets and concepts of negotiations that we have discussed and whether they would be adequately addressed.arrow_forwardWhile I am not a fan of AI as of yet, I do understand the endless possibilities. Based on the research, it is clear that AI has great potential for negotiation (Yang, 2025). Herold et al. (2025) suggested that AI can flag potential risks and liabilities, allowing negotiators to address them and mitigate potential problems proactively. AI can draft new contract templates by examining industry standards and past contracts, and AI technology can help lawyers spot errors and inconsistencies in contract drafts. In relation to risk management, AI can flag possible risks and liabilities, allowing negotiators to proactively address them and lessen potential problems, which can speed up the negotiation process, making the negotiation efficient because AI can industrialize tasks like document review, redlining, and finding potential issues, significantly reducing negotiation time. Lastly, AI can analyze vast amounts of data and identify errors, inconsistencies, and irregularities in…arrow_forward
- What is a main thought on using AI in contract negotiations?arrow_forwardWhat are some people thoughts on using AI in contract negotiations?arrow_forward3. Develop a high-level or summary: a. Risk Management Plan Focus on specific, actionable steps for each risk and mitigation strategy.Provide detailed timelines for procurement, stakeholder engagement, and risk monitoring.Avoid over-simplifying and add more technical details in areas like quality assurance and financial control measures. Add a risk prioritization method and mention how risks will be monitored and reviewed throughout the project lifecycle. Overall, it is well organized andc overs key risks.arrow_forward
- 3. Develop a high-level or summary: Human Resource Management Plan Provide more concrete timelines and actionable steps for human resource management.Include more detailed risk management strategies and link them more explicitly to the overall project plan.Expand on how training and development will be evaluated and tracked.Also, the overall length is good, but some sections could be condensed by eliminating repetition (e.g., you discuss stakeholder communication and engagement in two sections without adding new information).Try not to repeat the same risk management ideas (e.g., resource sharing and stakeholder concerns) in multiple sections without adding value.arrow_forwardBased on the U.S. Department of Transporation's publication on the number of inrternatioal passengers that come through New York airport (JFK) in 2012, how would I estimate the passenger volume for the coming year?arrow_forwardWhat are the role of trends and seasonality based on the Department of Transportation publication of the number of international passengers that come through New York (JFK) in 2012?arrow_forward
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningPractical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
- MarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing

