FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 155P
To determine
The flow rate of water through the channel.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water flows in a rectangular open channel of width 5 m at a rate of 7.5 m3/s. The critical depth for this flow is (a) 5 m (b) 2.5 m (c) 1.5 m (d) 0.96 m (e) 0.61 m
Water discharges into a rectangular horizontal channel from a sluice gate and undergoes a hydraulic jump. The channel is 25-m-wide and the flow depth and velocity before the jump are 2 m and 9 m/s, respectively. The flow depth after the jump is (a) 1.26 m (b) 2 m (c) 3.61 m (d ) 4.83 m (e) 6.55 m
A trapezoidal channel with a bottom width of 6 m, free surface width of 12 m, and flow depth of 1.6 m discharges water at a rate of 80 m3/s. If the surfaces of the channel are lined with asphalt (n = 0.016), determine the elevation drop of the channel per kilometer.
Chapter 13 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 13 - What is the driving force for flow in an open...Ch. 13 - How does open-channel flow differ from internal...Ch. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is normal depth? Explain how it is...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11CPCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 29PCh. 13 - Prob. 30EPCh. 13 - Prob. 31EPCh. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Prob. 42CPCh. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - A trapezoidal channel with a bottom width of 6 m....Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 58EPCh. 13 - Prob. 59EPCh. 13 - Prob. 60PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - Prob. 62PCh. 13 - During uniform flow n open channels, the flow...Ch. 13 - Prob. 64PCh. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 67CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 73CPCh. 13 - Prob. 74CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 76PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - During a hydraulic jump in a wide channel, the...Ch. 13 - Prob. 92PCh. 13 - Prob. 93CPCh. 13 - Prob. 94CPCh. 13 - Prob. 95CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Prob. 100PCh. 13 - Prob. 101PCh. 13 - Prob. 102EPCh. 13 - Prob. 103PCh. 13 - Prob. 104PCh. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107EPCh. 13 - Prob. 108PCh. 13 - Prob. 109PCh. 13 - Prob. 111PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 113PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - Water flows in a canal at an average velocity of 6...Ch. 13 - Prob. 122PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 124PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 126PCh. 13 - Prob. 128PCh. 13 - Prob. 129PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 132EPCh. 13 - Prob. 133EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 138PCh. 13 - Prob. 139PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 141PCh. 13 - Prob. 142PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 145PCh. 13 - Prob. 146PCh. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 154PCh. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water is flowing uniformly in a finished-concrete channel of trapezoidal cross section with a bottom width of 0.8 m, trapezoid angle of 50°, and a bottom angle of 0.4°. If the flow depth is measured to be 0.52 m, determine the flow rate of water through the channel.arrow_forwardConsider a double-rectangular flow channel composed of an outer rectangular channel and an inner rectangular channel. The width and height (or gap) of the inner rectangular channel are 60 and 20 mm, respectively, whereas the width and height of the outer rectangular channel are 100 and 40 mm, respectively. Oil and water, respectively, flow through the inner and outer rectangular channels, and the oil and water flow direction is the same. The flow rates of the oil and water are 0.2 and 0.3 kg/s, respectively. The important information for the thermal analysis is given below. The wall thermal resistance is 0.01 (m²-K)/W. If the flow is turbulent, the Dittus-Boelter correlation should be used for estimating the heat transfer coefficient. If the flow is laminar, the Nusselt numbers for water and oil are given as 4.01 and 5.63, respectively. The oil and water enter at temperatures of 100 and 30 °C, respectively. Oil: Specific heat capacity=2131 J/(kg K), Viscosity-3.25×102 N-s/m², Thermal…arrow_forwardConsider a double-rectangular flow channel composed of an outer rectangular channel and an inner rectangular channel. The width and height (or gap) of the inner rectangular channel are 60 and 20 mm, respectively, whereas the width and height of the outer rectangular channel are 100 and 40 mm, respectively. Oil and water, respectively, flow through the inner and outer rectangular channels, and the oil and water flow direction is the same. The flow rates of the oil and water are 0.2 and 0.3 kg/s, respectively. The important information for the thermal analysis is given below. The wall thermal resistance is 0.01 (m¹-K)/W. If the flow is turbulent, the Dittus-Boelter correlation should be used for estimating the heat transfer coefficient. If the flow is laminar, the Nusselt numbers for water and oil are given as 4.01 and 5.63, respectively. The oil and water enter at temperatures of 100 and 30 °C, respectively. Oil: Specific heat capacity=2131 J/(kg K), Viscosity-3.25x10 N-s/m², Thermal…arrow_forward
- Consider a double-rectangular flow channel composed of an outer rectangular channel and an inner rectangular channel. The width and height (or gap) of the inner rectangular channel are 60 and 20 mm, respectively, whereas the width and height of the outer rectangular channel are 100 and 40 mm, respectively. Oil and water, respectively, flow through the inner and outer rectangular channels, and the oil and water flow direction is the same. The flow rates of the oil and water are 0.2 and 0.3 kg/s, respectively. The important information for the thermal analysis is given below. The wall thermal resistance is 0.01 (m²-K)/W. If the flow is turbulent, the Dittus-Boelter correlation should be used for estimating the heat transfer coefficient. If the flow is laminar, the Nusselt numbers for water and oil are given as 4.01 and 5.63, respectively. The oil and water enter at temperatures of 100 and 30 °C, respectively. Oil: Specific heat capacity=2131 J/(kg K), Viscosity-3.25×10 N-s/m², Thermal…arrow_forwardThe flow rate of water flowing in a 5-m-wide channel is to be measured with a sharp-crested triangular weir 0.5 m above the channel bottom with a notch angle of 80°. If the flow depth upstream from the weir is 1.5 m, determine the flow rate of water through the channel. Take the weir discharge coefficient to be 0.60.arrow_forwardWater discharges into a rectangular horizontal channel from a sluice gate and undergoes a hydraulic jump. The flow depth and velocity before the jump are 1.25 m and 8.5 m/s, respectively. The percentage available head loss due to the hydraulic jump is (a) 4.7% (b) 7.2% (c) 8.8% (d ) 13.5% (e) 16.3%arrow_forward
- Consider the uniform flow of water in the triangular channel shown in the figure. The channel bed slope is 0.003 and the roughness coefficient is 0.025. The flow rate in the channel is 25 m³/s. What is the normal depth? a.3.48 m b.2.28 m c.4.70 m d. 1.98 m What is the critical depth? a. 1.98 m b.4.70 m c.3.48 m d.2.28 m If the flow depth at a certain section of the channel is 2 m, the flow is: a.subcritical b.critical c.supercritical d.can not be determined VAI 2 1arrow_forwardConsider water flow through two identical channels with square flow sections of 4 m × 4 m. Now the two channels are combined, forming a 8-m-wide channel. The flow rate is adjusted so that the flow depth remains constant at 4 m. Determine the percent increase in flow rate as a result of combining the channels.arrow_forwardWater is to be transported in a finished-concrete rectangular channel with a bottom width of 1.2 m at a rate of 5 m3 /s. The channel bottom drops 1 m per 500 m length. The minimum height of the channel under uniform-flowconditions is(a) 1.9 m (b) 1.5 m (c) 1.2 m (d) 0.92 m (e) 0.60 marrow_forward
- Consider steady flow of water in a horizontal channel of rectangular cross section. If the flow is supercritical, the flow depth will (a) increase, (b) remain constant, or (c) decrease in the flow direction.arrow_forwardThe unit flow rate passing through a wide channel is 6.0 m2/s. As shown in the figure, the channel consists of three infinitely long sections with different slopes, and the base slopes of each section are shown on the figure. There is a fully closed vertically movable cover in the S01 inclined channel and the water passes over the cover. The water depth formed just downstream of the cover is 0.6m, and the height of the relief structure at the beginning of the S03 inclined channel is 4m. What is the water depth at the end of the profile formed just upstream of the vertically moving cover in the S01 inclined channel by taking the Manning coefficient of friction of 0.02?arrow_forwardA trapezoidal channel has a base width of 8.3 m and side slopes that rise 1 m vertically for every 2 m horizontally. The depth of flow in the channel is 2.7 m, its gradient is 0.001 and the manning’s n is 0.035. Determine the mean velocity in the channelarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License