![Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134686974/9780134686974_largeCoverImage.gif)
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
4th Edition
ISBN: 9780134686974
Author: Michael Sullivan, Michael Sullivan III
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 14RE
To determine
Whether
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
3.
Consider the sequences of functions f₁: [-π, π] → R,
sin(n²x)
An(2)
n
f pointwise as
(i) Find a function ƒ : [-T,π] → R such that fn
n∞. Further, show that fn →f uniformly on [-π,π] as n → ∞.
[20 Marks]
(ii) Does the sequence of derivatives f(x) has a pointwise limit on [-7, 7]?
Justify your answer.
[10 Marks]
1. (i) Give the definition of a metric on a set X.
[5 Marks]
(ii) Let X = {a, b, c} and let a function d : XxX → [0, ∞) be defined
as d(a, a) = d(b,b) = d(c, c) 0, d(a, c) = d(c, a) 1, d(a, b) = d(b, a) = 4,
d(b, c) = d(c,b) = 2. Decide whether d is a metric on X. Justify your answer.
=
(iii) Consider a metric space (R, d.), where
=
[10 Marks]
0
if x = y,
d* (x, y)
5
if xy.
In the metric space (R, d*), describe:
(a) open ball B2(0) of radius 2 centred at 0;
(b) closed ball B5(0) of radius 5 centred at 0;
(c) sphere S10 (0) of radius 10 centred at 0.
[5 Marks]
[5 Marks]
[5 Marks]
(c) sphere S10 (0) of radius 10 centred at 0.
[5 Marks]
2. Let C([a, b]) be the metric space of continuous functions on the interval
[a, b] with the metric
doo (f,g)
=
max f(x)g(x)|.
xЄ[a,b]
= 1x. Find:
Let f(x) = 1 - x² and g(x):
(i) do(f, g) in C'([0, 1]);
(ii) do(f,g) in C([−1, 1]).
[20 Marks]
[20 Marks]
Chapter 13 Solutions
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
Ch. 13.1 - Graph f( x )={ 3x2ifx2 3ifx=2 (pp.100-102)Ch. 13.1 - If f( x )={ xifx0 1ifx0 what is f( 0 ) ?...Ch. 13.1 - 3. The limit of a function f (x) as x approaches c...Ch. 13.1 - If a function f has no limit as x approaches c,...Ch. 13.1 - True or False may be described by saving that the...Ch. 13.1 - True or False lim xc f( x ) exists and equals some...Ch. 13.1 -
Ch. 13.1 - lim x3 ( 2 x 2 +1 )Ch. 13.1 -
Ch. 13.1 - lim x0 2x x 2 +4
Ch. 13.1 - lim x4 x 2 4x x4Ch. 13.1 -
Ch. 13.1 -
Ch. 13.1 - Prob. 14AYUCh. 13.1 - , x in radians
Ch. 13.1 - lim x0 tanx x , x in radiansCh. 13.1 -
Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 17-22, use the graph shown to...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 23-42, graph each function. Use the...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - In Problems 43-48, use a graphing utility to find...Ch. 13.1 - Problems 49 52 are based on material learned...Ch. 13.1 - Find the center, foci, and vertices of the ellipse...Ch. 13.1 - Problems 49 – 52 are based on material learned...Ch. 13.1 - Problems 49 – 52 are based on material learned...Ch. 13.2 - The limit of the product of two functions equals...Ch. 13.2 - limxcb= ______.Ch. 13.2 - 3.
(a) x (b) c (c) cx (d) x/c
Ch. 13.2 - True or False The limit of a polynomial function...Ch. 13.2 - True or False The limit of a rational function at...Ch. 13.2 - True or false The limit of a quotient equals the...Ch. 13.2 - In Problems 7- 42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7 – 42, find each limit...Ch. 13.2 - In Problems 7 42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7 – 42, find each limit...Ch. 13.2 - In Problem 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7- 42, find each limit...Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 7-42, find each limit algebraically....Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In Problems 43-52, find the limit as x approaches...Ch. 13.2 - In problems 53-56, use the properties of limits...Ch. 13.2 - In problems 53-56, use the properties of limits...Ch. 13.2 - In problems 53-56, use the properties of limits...Ch. 13.2 - In problems 53-56, use the properties of limits...Ch. 13.2 - Graph the function f(x)=x3+x2+1.Ch. 13.2 - Problem 57-60 are based on material learned...Ch. 13.2 - Problem 57-60 are based on material learned...Ch. 13.2 - Problem 57-60 are based on material learned...Ch. 13.3 - For the function f( x )={ x 2 ifx0 x+1if0x2...Ch. 13.3 - What are the domain and range of f( x )=lnx ?Ch. 13.3 - Prob. 3AYUCh. 13.3 - Prob. 4AYUCh. 13.3 - Prob. 5AYUCh. 13.3 - Prob. 6AYUCh. 13.3 - Prob. 7AYUCh. 13.3 - Prob. 8AYUCh. 13.3 - Prob. 9AYUCh. 13.3 - Prob. 10AYUCh. 13.3 - Prob. 11AYUCh. 13.3 - Prob. 12AYUCh. 13.3 - Prob. 13AYUCh. 13.3 - Prob. 14AYUCh. 13.3 - Prob. 15AYUCh. 13.3 - Prob. 16AYUCh. 13.3 - Prob. 17AYUCh. 13.3 - Prob. 18AYUCh. 13.3 - Prob. 19AYUCh. 13.3 - Prob. 20AYUCh. 13.3 - Prob. 21AYUCh. 13.3 - Prob. 22AYUCh. 13.3 - Prob. 23AYUCh. 13.3 - Prob. 24AYUCh. 13.3 - Prob. 25AYUCh. 13.3 - Prob. 26AYUCh. 13.3 - Prob. 27AYUCh. 13.3 - Prob. 28AYUCh. 13.3 - Prob. 29AYUCh. 13.3 - Prob. 30AYUCh. 13.3 - Prob. 31AYUCh. 13.3 - Prob. 32AYUCh. 13.3 - Prob. 33AYUCh. 13.3 - Prob. 34AYUCh. 13.3 - Prob. 35AYUCh. 13.3 - Prob. 36AYUCh. 13.3 - Prob. 37AYUCh. 13.3 - Prob. 38AYUCh. 13.3 - Prob. 39AYUCh. 13.3 - Prob. 40AYUCh. 13.3 - Prob. 41AYUCh. 13.3 - Prob. 42AYUCh. 13.3 - Prob. 43AYUCh. 13.3 - Prob. 44AYUCh. 13.3 - Prob. 45AYUCh. 13.3 - Prob. 46AYUCh. 13.3 - Prob. 47AYUCh. 13.3 - Prob. 48AYUCh. 13.3 - Prob. 49AYUCh. 13.3 - Prob. 50AYUCh. 13.3 - Prob. 51AYUCh. 13.3 - Prob. 52AYUCh. 13.3 - Prob. 53AYUCh. 13.3 - Prob. 54AYUCh. 13.3 - Prob. 55AYUCh. 13.3 - Prob. 56AYUCh. 13.3 - Prob. 57AYUCh. 13.3 - Prob. 58AYUCh. 13.3 - Prob. 59AYUCh. 13.3 - Prob. 60AYUCh. 13.3 - Prob. 61AYUCh. 13.3 - Prob. 62AYUCh. 13.3 - Prob. 63AYUCh. 13.3 - Prob. 64AYUCh. 13.3 - Prob. 65AYUCh. 13.3 - Prob. 66AYUCh. 13.3 - Prob. 67AYUCh. 13.3 - Prob. 68AYUCh. 13.3 - Prob. 69AYUCh. 13.3 - Prob. 70AYUCh. 13.3 - Prob. 71AYUCh. 13.3 - Prob. 72AYUCh. 13.3 - Prob. 73AYUCh. 13.3 - Prob. 74AYUCh. 13.3 - Prob. 75AYUCh. 13.3 - Prob. 76AYUCh. 13.3 - Prob. 77AYUCh. 13.3 - Prob. 78AYUCh. 13.3 - Prob. 79AYUCh. 13.3 - Prob. 80AYUCh. 13.3 - Prob. 81AYUCh. 13.3 - Prob. 82AYUCh. 13.3 - Prob. 83AYUCh. 13.3 - Prob. 84AYUCh. 13.3 - Prob. 85AYUCh. 13.3 - Prob. 86AYUCh. 13.3 - Prob. 87AYUCh. 13.3 - Prob. 88AYUCh. 13.3 - Prob. 89AYUCh. 13.3 - Prob. 90AYUCh. 13.3 - Prob. 91AYUCh. 13.3 - Prob. 92AYUCh. 13.3 - Prob. 93AYUCh. 13.3 - Prob. 94AYUCh. 13.4 - Prob. 1AYUCh. 13.4 - Prob. 2AYUCh. 13.4 - Prob. 3AYUCh. 13.4 - Prob. 4AYUCh. 13.4 - Prob. 5AYUCh. 13.4 - Prob. 6AYUCh. 13.4 - Prob. 7AYUCh. 13.4 - Prob. 8AYUCh. 13.4 - Prob. 9AYUCh. 13.4 - Prob. 10AYUCh. 13.4 - Prob. 11AYUCh. 13.4 - Prob. 12AYUCh. 13.4 - Prob. 13AYUCh. 13.4 - Prob. 14AYUCh. 13.4 - Prob. 15AYUCh. 13.4 - Prob. 16AYUCh. 13.4 - Prob. 17AYUCh. 13.4 - Prob. 18AYUCh. 13.4 - Prob. 19AYUCh. 13.4 - Prob. 20AYUCh. 13.4 - Prob. 21AYUCh. 13.4 - Prob. 22AYUCh. 13.4 - Prob. 23AYUCh. 13.4 - Prob. 24AYUCh. 13.4 - Prob. 25AYUCh. 13.4 - Prob. 26AYUCh. 13.4 - Prob. 27AYUCh. 13.4 - Prob. 28AYUCh. 13.4 - Prob. 29AYUCh. 13.4 - Prob. 30AYUCh. 13.4 - Prob. 31AYUCh. 13.4 - Prob. 32AYUCh. 13.4 - Prob. 33AYUCh. 13.4 - Prob. 34AYUCh. 13.4 - Prob. 35AYUCh. 13.4 - Prob. 36AYUCh. 13.4 - Prob. 37AYUCh. 13.4 - Prob. 38AYUCh. 13.4 - Prob. 39AYUCh. 13.4 - Prob. 40AYUCh. 13.4 - Prob. 41AYUCh. 13.4 - Prob. 42AYUCh. 13.4 - Prob. 43AYUCh. 13.4 - Prob. 44AYUCh. 13.4 - Prob. 45AYUCh. 13.4 - Instantaneous Rate of Change The volume V of a...Ch. 13.4 - instantaneous Velocity of a Ball In physics it is...Ch. 13.4 - Prob. 48AYUCh. 13.4 - Prob. 49AYUCh. 13.4 - Prob. 50AYUCh. 13.4 - Prob. 51AYUCh. 13.4 - Prob. 52AYUCh. 13.4 - Prob. 53AYUCh. 13.4 - Prob. 54AYUCh. 13.5 - The formula for the area A of a rectangle of...Ch. 13.5 - ______.(pp.828-831)
Ch. 13.5 - Prob. 3AYUCh. 13.5 - Prob. 4AYUCh. 13.5 - Prob. 5AYUCh. 13.5 - Prob. 6AYUCh. 13.5 - Prob. 7AYUCh. 13.5 - Prob. 8AYUCh. 13.5 - Prob. 9AYUCh. 13.5 - Prob. 10AYUCh. 13.5 - Prob. 11AYUCh. 13.5 - Prob. 12AYUCh. 13.5 - Prob. 13AYUCh. 13.5 - Prob. 14AYUCh. 13.5 - Prob. 15AYUCh. 13.5 - Prob. 16AYUCh. 13.5 - Prob. 17AYUCh. 13.5 - Prob. 18AYUCh. 13.5 - Prob. 19AYUCh. 13.5 - Prob. 20AYUCh. 13.5 - Prob. 21AYUCh. 13.5 - Prob. 22AYUCh. 13.5 - Prob. 23AYUCh. 13.5 - Prob. 24AYUCh. 13.5 - Prob. 25AYUCh. 13.5 - Prob. 26AYUCh. 13.5 - Prob. 27AYUCh. 13.5 - Prob. 28AYUCh. 13.5 - Prob. 29AYUCh. 13.5 - Prob. 30AYUCh. 13.5 - Prob. 31AYUCh. 13.5 - Prob. 32AYUCh. 13.5 - Prob. 33AYUCh. 13.5 - Prob. 34AYUCh. 13.5 - Prob. 35AYUCh. 13.5 - Prob. 36AYUCh. 13 - In Problems 111, find the limit. limx2(3x22x+1)Ch. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - In Problems 1– 11, find each limit...Ch. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Prob. 25RECh. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - Prob. 35RECh. 13 - Prob. 36RECh. 13 - Prob. 37RECh. 13 - Instantaneous Velocity of a Ball In physics it is...Ch. 13 - Prob. 39RECh. 13 - Prob. 40RECh. 13 - Prob. 41RECh. 13 - Prob. 42RECh. 13 - Prob. 43RECh. 13 - Prob. 44RECh. 13 - Prob. 1CTCh. 13 - Prob. 2CTCh. 13 - Prob. 3CTCh. 13 - Prob. 4CTCh. 13 - Prob. 5CTCh. 13 - Prob. 6CTCh. 13 - Prob. 7CTCh. 13 - Prob. 8CTCh. 13 - Prob. 9CTCh. 13 - Prob. 10CTCh. 13 - Prob. 11CTCh. 13 - Prob. 12CTCh. 13 - Prob. 13CTCh. 13 - Prob. 14CTCh. 13 - Prob. 15CTCh. 13 - Prob. 16CTCh. 13 - Prob. 17CT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Given lim x-4 f (x) = 1,limx-49 (x) = 10, and lim→-4 h (x) = -7 use the limit properties to find lim→-4 1 [2h (x) — h(x) + 7 f(x)] : - h(x)+7f(x) 3 O DNEarrow_forward17. Suppose we know that the graph below is the graph of a solution to dy/dt = f(t). (a) How much of the slope field can you sketch from this information? [Hint: Note that the differential equation depends only on t.] (b) What can you say about the solu- tion with y(0) = 2? (For example, can you sketch the graph of this so- lution?) y(0) = 1 y ANarrow_forward(b) Find the (instantaneous) rate of change of y at x = 5. In the previous part, we found the average rate of change for several intervals of decreasing size starting at x = 5. The instantaneous rate of change of fat x = 5 is the limit of the average rate of change over the interval [x, x + h] as h approaches 0. This is given by the derivative in the following limit. lim h→0 - f(x + h) − f(x) h The first step to find this limit is to compute f(x + h). Recall that this means replacing the input variable x with the expression x + h in the rule defining f. f(x + h) = (x + h)² - 5(x+ h) = 2xh+h2_ x² + 2xh + h² 5✔ - 5 )x - 5h Step 4 - The second step for finding the derivative of fat x is to find the difference f(x + h) − f(x). - f(x + h) f(x) = = (x² x² + 2xh + h² - ])- = 2x + h² - 5h ])x-5h) - (x² - 5x) = ]) (2x + h - 5) Macbook Proarrow_forward
- Evaluate the integral using integration by parts. Sx² cos (9x) dxarrow_forwardLet f be defined as follows. y = f(x) = x² - 5x (a) Find the average rate of change of y with respect to x in the following intervals. from x = 4 to x = 5 from x = 4 to x = 4.5 from x = 4 to x = 4.1 (b) Find the (instantaneous) rate of change of y at x = 4. Need Help? Read It Master Itarrow_forwardVelocity of a Ball Thrown into the Air The position function of an object moving along a straight line is given by s = f(t). The average velocity of the object over the time interval [a, b] is the average rate of change of f over [a, b]; its (instantaneous) velocity at t = a is the rate of change of f at a. A ball is thrown straight up with an initial velocity of 128 ft/sec, so that its height (in feet) after t sec is given by s = f(t) = 128t - 16t². (a) What is the average velocity of the ball over the following time intervals? [3,4] [3, 3.5] [3, 3.1] ft/sec ft/sec ft/sec (b) What is the instantaneous velocity at time t = 3? ft/sec (c) What is the instantaneous velocity at time t = 7? ft/sec Is the ball rising or falling at this time? O rising falling (d) When will the ball hit the ground? t = sec Need Help? Read It Watch Itarrow_forward
- Find the slope of the tangent line to the graph of the function at the given point. f(x) = -4x + 5 at (-1, 9) m Determine an equation of the tangent line. y = Need Help? Read It Watch It SUBMIT ANSWERarrow_forwardFind the slope of the tangent line to the graph of the function at the given point. f(x) = 5x-4x² at (-1, -9) m Determine an equation of the tangent line. y = Need Help? Read It Master It SUBMIT ANSWERarrow_forwardFor what value of A and B the function f(x) will be continuous everywhere for the given definition?..arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageIntermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780395977224/9780395977224_smallCoverImage.gif)
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285195728/9781285195728_smallCoverImage.gif)
Intermediate Algebra
Algebra
ISBN:9781285195728
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY