Chemistry: The Molecular Nature of Matter
7th Edition
ISBN: 9781118516461
Author: Neil D. Jespersen, Alison Hyslop
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 141RQ
Interpretation Introduction
Interpretation:
The way in which the ozone layer kinetics produces a steady state can be mathematically written is to be described.
Concept Introduction:
The ozone layer is found in the stratosphere and troposphere layers of the atmosphere.
Ozone is constantly formed and destroyed in the atmosphere in order to maintain a constant concentration. This cycle of constant formation and destruction is called the Chapman cycle.
In a reaction at a steady state, the change in the concentration of a substrate is equal to zero.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Chemistry: The Molecular Nature of Matter
Ch. 13 - The iodate ion reacts with sulfite ions in the...Ch. 13 - Hydrogen sulfide burns in oxygen ro form sulfur...Ch. 13 - Use the graph in Figure 13.5 to estimate the rare...Ch. 13 - Practice Exercise 13.4 Use the graph in Figure...Ch. 13 - Prob. 5PECh. 13 - The rate law for the decomposition of HItoI2andH2...Ch. 13 - The reaction, BrO3-+3SO32-Br-+3SO42- has the rate...Ch. 13 - Practice Exercise 13.8
A certain reaction has an...Ch. 13 - Practice Exercise 13.9
For the reaction of with...Ch. 13 - Use the data from the other four experiments in...
Ch. 13 - Practice Exercise 13.11
Use the rate law...Ch. 13 - The following reaction is investigated to...Ch. 13 - Ordinary sucrose (table sugar) reacts with water...Ch. 13 - Practice Exercise 13.14 A certain reaction has the...Ch. 13 - When designing a consumer product, it is desirable...Ch. 13 - Practice Exercise 13.16
In Practice Exercise...Ch. 13 - Practice Exercise 13.17
In Practice Exercise...Ch. 13 -
Practice Exercise 13.15
From the answer to...Ch. 13 - Practice Exercise 13.19 The radioactive isotope,...Ch. 13 - Prob. 20PECh. 13 - Prob. 21PECh. 13 - For the reaction in Example 13.10, determine how...Ch. 13 - Practice Exercise 13.23
A sample of nitrosyl...Ch. 13 - Practice Exercise 13.24
The reaction is second...Ch. 13 - Suppose that the value of t1/2 for a certain...Ch. 13 - The reaction CH3I+HICH4+I2 was observed to have...Ch. 13 - Practice Exercise 13.27
Ozone decomposes to form...Ch. 13 - Prob. 28PECh. 13 - Practice Exercise 13.29
Select the reactions below...Ch. 13 - Ozone, O3, reacts with nitric oxide, NO, to form...Ch. 13 - Practice Exercise 13.31
The mechanism for the...Ch. 13 - Why are chemical reactions usually carried out in...Ch. 13 - 13.2 Give an example from everyday experience of...Ch. 13 - 13.3 What is a homogeneous reaction? What is a...Ch. 13 - How does particle size affect the rate of a...Ch. 13 - Prob. 5RQCh. 13 - 13.6 The rate of hardening of epoxy glue depends...Ch. 13 - 13.7 A PolaroidTM instant photograph develops...Ch. 13 - Prob. 8RQCh. 13 - 13.9 Persons who have been submerged in very cold...Ch. 13 - How does an instantaneous rate of reaction differ...Ch. 13 - What is the difference between the rate of...Ch. 13 - Explain how the initial instantaneous rate of...Ch. 13 - 13.13 What are the units of reaction rate? What is...Ch. 13 - 13.14 Describe how to determine the instantaneous...Ch. 13 - What are the units of the rate constant for (a) a...Ch. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - If the concentration of a reactant is doubled and...Ch. 13 - If the concentration of a reactant is doubled and...Ch. 13 - If the concentration of a reactant is doubled, by...Ch. 13 - In an experiment, the concentration of a reactant...Ch. 13 - Biological reactions usually involve the...Ch. 13 - Rearrange the integrated rate equations for (a) a...Ch. 13 - 13.24 How is the half-life of a first-order...Ch. 13 - 13.25 How is the half-life of a second-order...Ch. 13 - How is the half-life of a zero-order reaction...Ch. 13 - 13.27 Derive the equations for for first- and...Ch. 13 - 13.28 The integrated rate law for a zero-order...Ch. 13 - Which of the following graphs represents the data...Ch. 13 - 13.30 What is the basic postulate of collision...Ch. 13 - What two factors influence the effectiveness of...Ch. 13 - In terms of the kinetic theory, why does an...Ch. 13 - Prob. 33RQCh. 13 - Prob. 34RQCh. 13 - Draw a potential energy diagram for an exothermic...Ch. 13 - 13.36 Some might say that the “transition state...Ch. 13 - What is the activation energy? How is the...Ch. 13 - 13.38 The decomposition of carbon dioxide,
has an...Ch. 13 - 13.39 Draw the potential energy diagram for an...Ch. 13 - What is the definition of an elementary process?...Ch. 13 - What is a rate-determining step?Ch. 13 - What is an intermediate in the context of reaction...Ch. 13 - Free radicals are discussed in Chemistry Outside...Ch. 13 - Suppose we compared two reactions, one requiring...Ch. 13 - In what way is the rate law for a reaction related...Ch. 13 - How does an elementary process relate to (a) the...Ch. 13 - How does a catalyst increase the rate of a...Ch. 13 - 13.48 What is a homogeneous catalyst? How does it...Ch. 13 - What is the purpose of the catalytic converter...Ch. 13 - Tell how you would recognize a catalyst in a...Ch. 13 - Prob. 51RQCh. 13 - Why should leaded gasoline not be used in cars...Ch. 13 - The following data were collected at a certain...Ch. 13 - 13.54 The following data were collected for the...Ch. 13 - For the reaction, 2A+B3C, it was found that the...Ch. 13 - In the reaction, 3H2+N22NH3, how does the rate of...Ch. 13 - In the combustion of hexane (a low-boiling...Ch. 13 - At a certain moment in the reaction 2N2O54NO2+O2...Ch. 13 - Consider the reaction,...Ch. 13 - 13.60 The decomposition of phosphine, a very toxic...Ch. 13 - 13.61 Estimate the rate of the reaction,
given...Ch. 13 - 13.62 Estimate the rate of the reaction,
given...Ch. 13 - The oxidation of NO (released in small amounts in...Ch. 13 - The rate law for the decomposition of N2O5 is rate...Ch. 13 - The rate law for a certain enzymatic reaction is...Ch. 13 - 13.66 Radon-220 is radioactive, and decays into...Ch. 13 - The following data were collected for the reaction...Ch. 13 - Cyclopropane, C3H6, is a gas used as a general...Ch. 13 - 13.69 The reaction of iodide ion with hypochlorite...Ch. 13 - 13.70 The formation of small amounts of nitrogen...Ch. 13 - At a certain temperature, the following data were...Ch. 13 - The following data were obtained for the reaction...Ch. 13 - Data for the decomposition of SO2Cl2 according to...Ch. 13 - Prob. 74RQCh. 13 - The decomposition of SO2Cl2 described in Problem...Ch. 13 - 13.76 The decomposition of acetaldehyde, was...Ch. 13 - If it takes 75.0 min for the concentration of a...Ch. 13 - It takes 15.4 minutes for the concentration of a...Ch. 13 - The concentration of a drug in the body is often...Ch. 13 - 13.80 Phosphine, , decomposes into phosphorus, ,...Ch. 13 - Hydrogen iodide decomposes according to the...Ch. 13 - 13.82 The reaction of to form is second...Ch. 13 - Using the information determined in Problem 13.79,...Ch. 13 - The second-order rate constant for the...Ch. 13 - The half-life of a certain first-order reaction is...Ch. 13 - Strontium-90 has a half-life of 28 years. How long...Ch. 13 - 13.87 Using the graph from Problem 13.53,...Ch. 13 - Using the graph from Problem 13.54, determine how...Ch. 13 - Hydrogen peroxide, which decomposes in a...Ch. 13 - SO2Cl2 decomposes in a first-order process with a...Ch. 13 - Prob. 91RQCh. 13 - A tree killed by being buried under volcanic ash...Ch. 13 - Prob. 93RQCh. 13 - Prob. 94RQCh. 13 - The following data were collected for a reaction:...Ch. 13 - Rate constants were measured at various...Ch. 13 - NOCl decomposes as:...Ch. 13 - 13.98. The conversion of cyclopropane, an...Ch. 13 - The decomposition of N2O5 has an activation energy...Ch. 13 - At 35C, the rate constant for the reaction...Ch. 13 - The oxidation of NO to NO2, one of the reactions...Ch. 13 - A reaction has the following mechanism:...Ch. 13 - If the reaction NO2+CONO+CO2 occured by a one-step...Ch. 13 - If the reaction 2NO2(g)+F2(g)2NO2F(g) occurred by...Ch. 13 - Consider the general reaction AB+CAC+B If this...Ch. 13 - Nitrogen dioxide reacts with carbon monoxide to...Ch. 13 - 13.107. The oxidation of nitrogen monoxide with...Ch. 13 - The reaction of chloroform and chlorine forms...Ch. 13 - The following data were collected for the reaction...Ch. 13 - The age of wine can be determined by measuring the...Ch. 13 - 13.111 On the following graph, label the products,...Ch. 13 - Carbon-14 dating can be used to estimate the age...Ch. 13 - *13.113 What percentage of cesium chloride made...Ch. 13 - For the following reactions, predict how the rate...Ch. 13 - One of the reactions that occurs in polluted air...Ch. 13 - * 13.116 Suppose a reaction occurs with the...Ch. 13 - The decomposition of urea, (NH2)2CO,in0.10MHCl...Ch. 13 - Show that for a reaction that obeys the general...Ch. 13 - 13.119 The rates of many reactions approximately...Ch. 13 - If the rate constant for a first-order reaction is...Ch. 13 - For the following potential energy diagram, which...Ch. 13 - Prob. 122RQCh. 13 - Prob. 123RQCh. 13 -
*13.124 The cooking of an egg involves the...Ch. 13 -
*13.125 The following question is based on...Ch. 13 - Prob. 126RQCh. 13 - The experimental rate law for the reaction...Ch. 13 - Radioactive samples are considered to become...Ch. 13 - Use a spreadsheet to generate a graph for the data...Ch. 13 - 13.130 Use a spreadsheet to generate separate...Ch. 13 - Prob. 131RQCh. 13 - The catalyzed decomposition of ethanol at 327C has...Ch. 13 - *13.133 On December 19, 2007, the T2 Laboratories,...Ch. 13 - Prob. 134RQCh. 13 - Prob. 135RQCh. 13 - Can a reaction have a negative activation energy?...Ch. 13 - *13.137 Assume you have a three-step mechanism....Ch. 13 - 13.138 What range of ages can dating reliably...Ch. 13 - 13.139 Why are initial reaction rates used to...Ch. 13 - If a reaction is reversible (i.e., the products...Ch. 13 - Prob. 141RQCh. 13 - *13.142 How would you measure the rate of an...Ch. 13 - * 13.143 For a reaction done on the ton scale,...Ch. 13 - 13.44 Can we use molality instead of molarity in...
Knowledge Booster
Similar questions
- Nitrosyl bromide decomposes to nitrogen oxide and bromine. Use the following data to determine the order of the decomposition of nitrosyl bromide.arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward. Hydrogen gas and chlorine gas in the presence of light react explosively to form hydrogen chloride H2(g)+Cl2(g)2HCl(g)The reaction is strongly exothermic. Would an increase in temperature for the system lend to favor or disfavor the production of hydrogen chloride?arrow_forward
- Substances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forwardExplain what is meant by the average rate of a reaction.arrow_forwardA reaction generates chlorine gas (Cl2) as a product. The reactants are mixed and sealed in a 250.-mL container. After 30.0minutes, 2.97102mol of Cl2 has been generated. Calculate the average rate of the reaction.arrow_forward
- . Account for the increase in reaction rate brought about by a catalyst.arrow_forwardBacteria cause milk to go sour by generating lactic acid. Devise an experiment that could measure the activation energy for the production of lactic acid by bacteria in milk. Describe how your experiment will provide the information you need to determine this value. What assumptions must be made about this reaction?arrow_forwardThe enzyme carbonic anhydrase catalyzes the transformation of carbon dioxide into hydrogen carbonate ions. This reaction was studied by H. DeVoe and G. B. Kistiakowsky (Journal of the American Chemical Society, Vol. 83, p. 274, 1961) and found to obey the Michaelis-Menten model. Use the data below at a given temperature to calculate the maximum rate of the reaction. Ratemax. See Question 45 for the graphical method to use.arrow_forward
- Based on the kinetic theory of matter, what would the action of a catalyst do to a reaction that is the reverse of some reaction that we say is catalyzed?arrow_forwardHydrogen bromide is a highly reactive and corrosive gas used mainly as a catalyst for organic reactions. It is produced by reacting hydrogen and bromine gases together. Â H2(g)+Br2(g)2HBr(g)The rate is followed by measuring the intensity of the orange color of the bromine gas. The following data are obtained: (a) What is the order of the reaction with respect to hydrogen, bromine, and overall? (b) Write the rate expression of the reaction. (c) Calculate k for the reaction. What are the units for k? (d) When [ H2 ]=0.455Mand [ Br2 ]=0.215M, what is the rate of the reaction?arrow_forwardSome bacteria are resistant to the antibiotic penicillin because they produce penicillinase, an enzyme with a molecular weight of 3104 g/mol that converts penicillin into inactive molecules. Although the kinetics of enzyme-catalyzed reactions can be complex, at low concentrations this reaction can be described by a rate equation that is first order in the catalyst (penicillinase) and that also involves the concentration of penicillin. From the following data: 1.0 L of a solution containing 0.15 g ( 0.15106 g) of penicillinase, determine the order of the reaction with respect to penicillin and the value of the rate constant. [Penicillin] (M) Rate (mol/L/min) 2.0106 1.01010 3.0106 1.51010 4.0106 2.01010arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning