Chemistry: The Molecular Nature of Matter
7th Edition
ISBN: 9781118516461
Author: Neil D. Jespersen, Alison Hyslop
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 131RQ
Interpretation Introduction
Interpretation:
The number of alpha particles that are emitted per second by one picogram of
Concept Information:
The
It may also be defined as the concentration of a reactant that is transformed into product at a particular instant of time.
The differential rate law for the simplest first-order reaction is as follows.
The relationship between concentration and time for a reaction with this rate law is given as,
Here,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Chemistry: The Molecular Nature of Matter
Ch. 13 - The iodate ion reacts with sulfite ions in the...Ch. 13 - Hydrogen sulfide burns in oxygen ro form sulfur...Ch. 13 - Use the graph in Figure 13.5 to estimate the rare...Ch. 13 - Practice Exercise 13.4 Use the graph in Figure...Ch. 13 - Prob. 5PECh. 13 - The rate law for the decomposition of HItoI2andH2...Ch. 13 - The reaction, BrO3-+3SO32-Br-+3SO42- has the rate...Ch. 13 - Practice Exercise 13.8
A certain reaction has an...Ch. 13 - Practice Exercise 13.9
For the reaction of with...Ch. 13 - Use the data from the other four experiments in...
Ch. 13 - Practice Exercise 13.11
Use the rate law...Ch. 13 - The following reaction is investigated to...Ch. 13 - Ordinary sucrose (table sugar) reacts with water...Ch. 13 - Practice Exercise 13.14 A certain reaction has the...Ch. 13 - When designing a consumer product, it is desirable...Ch. 13 - Practice Exercise 13.16
In Practice Exercise...Ch. 13 - Practice Exercise 13.17
In Practice Exercise...Ch. 13 -
Practice Exercise 13.15
From the answer to...Ch. 13 - Practice Exercise 13.19 The radioactive isotope,...Ch. 13 - Prob. 20PECh. 13 - Prob. 21PECh. 13 - For the reaction in Example 13.10, determine how...Ch. 13 - Practice Exercise 13.23
A sample of nitrosyl...Ch. 13 - Practice Exercise 13.24
The reaction is second...Ch. 13 - Suppose that the value of t1/2 for a certain...Ch. 13 - The reaction CH3I+HICH4+I2 was observed to have...Ch. 13 - Practice Exercise 13.27
Ozone decomposes to form...Ch. 13 - Prob. 28PECh. 13 - Practice Exercise 13.29
Select the reactions below...Ch. 13 - Ozone, O3, reacts with nitric oxide, NO, to form...Ch. 13 - Practice Exercise 13.31
The mechanism for the...Ch. 13 - Why are chemical reactions usually carried out in...Ch. 13 - 13.2 Give an example from everyday experience of...Ch. 13 - 13.3 What is a homogeneous reaction? What is a...Ch. 13 - How does particle size affect the rate of a...Ch. 13 - Prob. 5RQCh. 13 - 13.6 The rate of hardening of epoxy glue depends...Ch. 13 - 13.7 A PolaroidTM instant photograph develops...Ch. 13 - Prob. 8RQCh. 13 - 13.9 Persons who have been submerged in very cold...Ch. 13 - How does an instantaneous rate of reaction differ...Ch. 13 - What is the difference between the rate of...Ch. 13 - Explain how the initial instantaneous rate of...Ch. 13 - 13.13 What are the units of reaction rate? What is...Ch. 13 - 13.14 Describe how to determine the instantaneous...Ch. 13 - What are the units of the rate constant for (a) a...Ch. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - If the concentration of a reactant is doubled and...Ch. 13 - If the concentration of a reactant is doubled and...Ch. 13 - If the concentration of a reactant is doubled, by...Ch. 13 - In an experiment, the concentration of a reactant...Ch. 13 - Biological reactions usually involve the...Ch. 13 - Rearrange the integrated rate equations for (a) a...Ch. 13 - 13.24 How is the half-life of a first-order...Ch. 13 - 13.25 How is the half-life of a second-order...Ch. 13 - How is the half-life of a zero-order reaction...Ch. 13 - 13.27 Derive the equations for for first- and...Ch. 13 - 13.28 The integrated rate law for a zero-order...Ch. 13 - Which of the following graphs represents the data...Ch. 13 - 13.30 What is the basic postulate of collision...Ch. 13 - What two factors influence the effectiveness of...Ch. 13 - In terms of the kinetic theory, why does an...Ch. 13 - Prob. 33RQCh. 13 - Prob. 34RQCh. 13 - Draw a potential energy diagram for an exothermic...Ch. 13 - 13.36 Some might say that the “transition state...Ch. 13 - What is the activation energy? How is the...Ch. 13 - 13.38 The decomposition of carbon dioxide,
has an...Ch. 13 - 13.39 Draw the potential energy diagram for an...Ch. 13 - What is the definition of an elementary process?...Ch. 13 - What is a rate-determining step?Ch. 13 - What is an intermediate in the context of reaction...Ch. 13 - Free radicals are discussed in Chemistry Outside...Ch. 13 - Suppose we compared two reactions, one requiring...Ch. 13 - In what way is the rate law for a reaction related...Ch. 13 - How does an elementary process relate to (a) the...Ch. 13 - How does a catalyst increase the rate of a...Ch. 13 - 13.48 What is a homogeneous catalyst? How does it...Ch. 13 - What is the purpose of the catalytic converter...Ch. 13 - Tell how you would recognize a catalyst in a...Ch. 13 - Prob. 51RQCh. 13 - Why should leaded gasoline not be used in cars...Ch. 13 - The following data were collected at a certain...Ch. 13 - 13.54 The following data were collected for the...Ch. 13 - For the reaction, 2A+B3C, it was found that the...Ch. 13 - In the reaction, 3H2+N22NH3, how does the rate of...Ch. 13 - In the combustion of hexane (a low-boiling...Ch. 13 - At a certain moment in the reaction 2N2O54NO2+O2...Ch. 13 - Consider the reaction,...Ch. 13 - 13.60 The decomposition of phosphine, a very toxic...Ch. 13 - 13.61 Estimate the rate of the reaction,
given...Ch. 13 - 13.62 Estimate the rate of the reaction,
given...Ch. 13 - The oxidation of NO (released in small amounts in...Ch. 13 - The rate law for the decomposition of N2O5 is rate...Ch. 13 - The rate law for a certain enzymatic reaction is...Ch. 13 - 13.66 Radon-220 is radioactive, and decays into...Ch. 13 - The following data were collected for the reaction...Ch. 13 - Cyclopropane, C3H6, is a gas used as a general...Ch. 13 - 13.69 The reaction of iodide ion with hypochlorite...Ch. 13 - 13.70 The formation of small amounts of nitrogen...Ch. 13 - At a certain temperature, the following data were...Ch. 13 - The following data were obtained for the reaction...Ch. 13 - Data for the decomposition of SO2Cl2 according to...Ch. 13 - Prob. 74RQCh. 13 - The decomposition of SO2Cl2 described in Problem...Ch. 13 - 13.76 The decomposition of acetaldehyde, was...Ch. 13 - If it takes 75.0 min for the concentration of a...Ch. 13 - It takes 15.4 minutes for the concentration of a...Ch. 13 - The concentration of a drug in the body is often...Ch. 13 - 13.80 Phosphine, , decomposes into phosphorus, ,...Ch. 13 - Hydrogen iodide decomposes according to the...Ch. 13 - 13.82 The reaction of to form is second...Ch. 13 - Using the information determined in Problem 13.79,...Ch. 13 - The second-order rate constant for the...Ch. 13 - The half-life of a certain first-order reaction is...Ch. 13 - Strontium-90 has a half-life of 28 years. How long...Ch. 13 - 13.87 Using the graph from Problem 13.53,...Ch. 13 - Using the graph from Problem 13.54, determine how...Ch. 13 - Hydrogen peroxide, which decomposes in a...Ch. 13 - SO2Cl2 decomposes in a first-order process with a...Ch. 13 - Prob. 91RQCh. 13 - A tree killed by being buried under volcanic ash...Ch. 13 - Prob. 93RQCh. 13 - Prob. 94RQCh. 13 - The following data were collected for a reaction:...Ch. 13 - Rate constants were measured at various...Ch. 13 - NOCl decomposes as:...Ch. 13 - 13.98. The conversion of cyclopropane, an...Ch. 13 - The decomposition of N2O5 has an activation energy...Ch. 13 - At 35C, the rate constant for the reaction...Ch. 13 - The oxidation of NO to NO2, one of the reactions...Ch. 13 - A reaction has the following mechanism:...Ch. 13 - If the reaction NO2+CONO+CO2 occured by a one-step...Ch. 13 - If the reaction 2NO2(g)+F2(g)2NO2F(g) occurred by...Ch. 13 - Consider the general reaction AB+CAC+B If this...Ch. 13 - Nitrogen dioxide reacts with carbon monoxide to...Ch. 13 - 13.107. The oxidation of nitrogen monoxide with...Ch. 13 - The reaction of chloroform and chlorine forms...Ch. 13 - The following data were collected for the reaction...Ch. 13 - The age of wine can be determined by measuring the...Ch. 13 - 13.111 On the following graph, label the products,...Ch. 13 - Carbon-14 dating can be used to estimate the age...Ch. 13 - *13.113 What percentage of cesium chloride made...Ch. 13 - For the following reactions, predict how the rate...Ch. 13 - One of the reactions that occurs in polluted air...Ch. 13 - * 13.116 Suppose a reaction occurs with the...Ch. 13 - The decomposition of urea, (NH2)2CO,in0.10MHCl...Ch. 13 - Show that for a reaction that obeys the general...Ch. 13 - 13.119 The rates of many reactions approximately...Ch. 13 - If the rate constant for a first-order reaction is...Ch. 13 - For the following potential energy diagram, which...Ch. 13 - Prob. 122RQCh. 13 - Prob. 123RQCh. 13 -
*13.124 The cooking of an egg involves the...Ch. 13 -
*13.125 The following question is based on...Ch. 13 - Prob. 126RQCh. 13 - The experimental rate law for the reaction...Ch. 13 - Radioactive samples are considered to become...Ch. 13 - Use a spreadsheet to generate a graph for the data...Ch. 13 - 13.130 Use a spreadsheet to generate separate...Ch. 13 - Prob. 131RQCh. 13 - The catalyzed decomposition of ethanol at 327C has...Ch. 13 - *13.133 On December 19, 2007, the T2 Laboratories,...Ch. 13 - Prob. 134RQCh. 13 - Prob. 135RQCh. 13 - Can a reaction have a negative activation energy?...Ch. 13 - *13.137 Assume you have a three-step mechanism....Ch. 13 - 13.138 What range of ages can dating reliably...Ch. 13 - 13.139 Why are initial reaction rates used to...Ch. 13 - If a reaction is reversible (i.e., the products...Ch. 13 - Prob. 141RQCh. 13 - *13.142 How would you measure the rate of an...Ch. 13 - * 13.143 For a reaction done on the ton scale,...Ch. 13 - 13.44 Can we use molality instead of molarity in...
Knowledge Booster
Similar questions
- At 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardSucrose, a sugar, decomposes in acid solution to give glucose and fructose. The reaction is first-order in sucrose, and the rate constant at 25 C is k = 0.21 h1. If the initial concentration of sucrose is 0.010 mol/L, what is its concentration after 5.0 h?arrow_forwardWhen enzymes are present at very low concentration, their effect on reaction rate can be described by first-order kinetics. Calculate by what factor the rate of an enzyme-catalyzed reaction changes when the enzyme concentration is changed from 1.5 107 M to 4.5 106 M.arrow_forward
- Hydrogen peroxide, H2O2(aq), decomposes to H2O() and O2(g) in a reaction that is first-order in H2O2 and has a rate constant k = 1.06 103 min1 at a given temperature. (a) How long will it take for 15% of a sample of H2O2 to decompose? (b) How long will it take for 85% of the sample to decompose?arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forwardRadioactive gold-198 is used in the diagnosis of liver problems. 198Au decays in a first-order process, emitting a particle (electron). The half-life of this isotope is 2.7 days. You begin with a 5.6-mg sample of the isotope. Calculate how much gold-198 remains after 1.0 day.arrow_forward
- The half-life of tritium, 3H, is 12.26 years. Tritium is the radioactive isotope of hydrogen. (a) What is the rate constant for the radioactive decay of tritium, in y1 and s1? (b) What percentage of the original tritium is left after 61.3 years?arrow_forwardThe decomposition of N2O5 in CCl4 is a first-order reaction. If 2.56 mg of N2O5 is present initially and 2.50 mg is present after 4.26 minutes at 55 C, what is the value of the rate constant, k?arrow_forwardThe decomposition of SO2Cl2 is a first-order reaction: SO2Cl2(g) SO2(g) + Cl2(g) The rate constant for the reaction is 2.8 103 min1 at 600 K. If the initial concentration of SO2Cl2 is 1.24 103 mol/L, how long will it take for the concentration to drop to 0.31 103 mol/L?arrow_forward
- The decomposition of many substances on the surface of a heterogeneous catalyst shows the following behavior: How do you account for the rate law changing from first order to zero order in the concentration of reactant?arrow_forwardThe dimerization of butadiene, C4H6, to form 1,5-cyclooctadiene is a second-order process that occurs when the diene is heated. In an experiment, a sample of 0.0087 mol of C4H6 was heated in a 1.0-L flask. After 600. seconds, 21% of the butadiene had dimerized. Calculate the rate constant for this reaction.arrow_forwardThe reaction NO(g) + 1/2 Cl2(g) NOCl(g) is first-order in [Cl2] and second-order with respect to [NO]. Under a given set of conditions, the initial rate of this reaction is 620 106 mol/L s. What is the rate of this reaction if the concentration of NO is doubled and the concentration of Cl2 is reduced to half the original value? (a) 6.20 106 mol/L s (b) 124 105 mol/L s (c) 2.48 105 mol/L s (d) 4.96 105 mol/L sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning