Atkins' Physical Chemistry
Atkins' Physical Chemistry
11th Edition
ISBN: 9780198769866
Author: ATKINS, P. W. (peter William), De Paula, Julio, Keeler, JAMES
Publisher: Oxford University Press
Question
Book Icon
Chapter 13, Problem 13E.11P
Interpretation Introduction

Interpretation:

The standard molar entropy of F2 at 298K has to be stated.

Concept introduction:

The randomness present in the system is known as its entropy.  It is an extensive property.  At equilibrium, the entropy of the system is zero.  It is denoted by S.  The entropy that is measured under the standard conditions of temperature is known as standard entropy.  The standard entropy change is denoted by ΔS.

Expert Solution & Answer
Check Mark

Answer to Problem 13E.11P

The standard molar entropy of F2 at 298K is 199.4Jmol-1K-1_.

Explanation of Solution

The given value of fundamental vibrational wavenumber for the ground state of F2, 2u, is 450cm1.

The value of first two excited states of F2 is 1.609eV and 1.702eV.

The value of equilibrium internuclear distance is 190pm or 190×1012m.

The molar mass of F2 is 2×18.998g/mol=37.996g/mol=38.00g/mol.

The value of Planck’s constant is 6.626068×1034Js.

The value of speed of light is 2.998×1010cms1.

The value of Boltzmann’s constant is 1.3806503×1023JK1.

The expression to show the molar entropy, Sm  is given below.

    Sm=UmUm(0)T+R(lnqmNA1)        (1)

Where,

  • U is the internal energy.
  • T is the temperature.
  • qm is the molecular partition function.
  • NA is the Avogadro’s number.
  • R is the universal gas constant.

The expression for the internal energy is given below.

    UmUm(0)T=NA(lnqmβ)V        (2)

In the expression, qmNA is equal to qmTNA=Translationalpartitionfunction, qmR=Rotationalpartitionfunction and qmV=Vibrationalpartitionfunction.

So, the expression for UmUm(0) is written below.

    UmUm(0)=NA[ET+ER+EV+EE]        (3)

The expression for translational partition function, qmTNA is given below.

    qmTNA=kTpΘ(2πmkTh)3=(2πk)3/2pΘh3(T/K)5/2(M/gmol1)3/2

Where,

  • h is the Planck’s constant.
  • M is the molar mass of F2.
  • k is the Boltzmann constant.

Substitute (2πk)3/2pΘh3 as 2.561×102, T/K as 298 and M as 38.00g/mol in the above equation.

    qmTNA=2.561×102×(298)5/2(38.00)3/2=2.561×102×(1.532995×106)×(234.25)=9.20×106

Thus, the value of translational partition function is 9.20×106.

The translational energy, ET is calculate by the expression given below.

    ET=32kT        (4)

The value of rotational constant is calculated by the expression given below.

    B˜=4πcI=4πcμR2=4πc×M2NAR2        (5)

Where,

  • μ is the mass divided by the Avogadro’s number of fluorine in kg/mol.
  • R is the equilibrium internuclear distance.

Substitute the value of M, NA, c, as 1.0546×1034kgm2s1 and R as in equation (5).

    B˜=1.0546×1034kgm2s14×3.14×2.998×1010cm/s×19×103kg2×6.022×1023mol×(190.×1012m)2=1.0546×1034kgm2s14×3.14×2.998×1010cm/s×1.57736×1026×(190.×1012m)2=1.0546×10342.1436×1034cm=0.4918cm1

The expression for rotational partition function, qmR is given below.

    qmR=kTσhcB˜        (6)

Where,

  • k is the Boltzmann constant.(1.3806503×1023JK1)
  • h is the Planck’s constant.
  • c is the speed of light.
  • B˜ is the rotational constant.

Substitute the values of k, h, c, T and B˜ in the above equation.

    qmR=1.3806503×1023JK16.62606957×1034Js×2.998×1010cm/s(TσB˜)=1.3806503×1023×1034×1010JK119.86495(TσB˜)=0.6950×(2982×0.4918)=210.6

The rotational energy, ET is calculate by the expression given below.

    ER=kT        (4)

The value of vibrational partition function is given below.

    qmV=(11ehcν¯kT)

Substitute the value of hck as 1.4388, and temperature in the above equation.

    qmV=(11e1.4388×(ν¯/cm1)298K/K)=(11e217)=110.114=1.129

The value of vibrational partition function is 1.129.

The expression for the vibrational energy is given below.

    EV=hcv˜ehckT

Substitute the value of hck as 1.4388, v˜ as 450cm1, h, c and temperature in the above equation.

    EV=6.62606957×1034Js×2.998×1010cms1×450cm1e(1.4388(450)298)1=8939.23045e217261×1034+10J=8939.230457.78×1024J=1.149×1021J

The value of Boltzmann factor corresponding to the lowest excited electronic state is given below.

    exp((1.609eV)(1.602×1019eV1)1.381×1023TK1×298K)=exp((2.577618×104eV1)411.538)=exp(6.263×103×104)=6.3×1028

The value of qmE equals to the degeneracy of the ground state as calculated below.

    qmE=2×(1+(6.3×1028))=2

Thus, the value of electronic partition function is equal to 2.

The expression to calculate the expression, R(lnqmNA1) is given below.

    R(lnqmNA1)=R(lnqmTNAqmRqmVqmE1)

Substitute the calculated values of qmTNA, qmR, qmV and qmE in the above expression.

    R(lnqmNA1)=8.3145Jmol1K1(ln(9.20×106×210.6×1.129×2)1)=8.3145Jmol1K1(ln(4374.9×106)1)=8.3145Jmol1K1×(22.191)=176.3Jmol1K1

Thus, the value for the expression R(lnqmNA1) is 176.3Jmol1K1.

The expression to calculate the internal energy is given below.

    UmUm(0)T=NAT[ET+ER+EV+EE]UmUm(0)T=NAT[32kT+kT+1.149×1021J]UmUm(0)T=52R×NAT[1.149×1021J]

Substitute the value of R, NA and T in the above expression.

    UmUm(0)T=52×8.3145Jmol1K1×6.022×1023mol298K[1.149×1021J]=20.7862Jmol1K1+0.0232×102Jmol1K1=23.1062Jmol1K1

Thus, the value of UmUm(0)T=23.1062Jmol1K1.

Substitute the values of UmUm(0)T=23.1062Jmol1K1 and R(lnqmNA1) as 176.3Jmol1K1 in equation (1).

    Sm=23.1062Jmol1K1+176.3Jmol1 K1=199.4Jmol-1K-1_

Therefore, the value of molar entropy is 199.4Jmol-1K-1_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Briefly describe the structure and bonding of graphite. Indicate some type of inorganic compound with a complex structure that forms graphite.
For c4h5n2 draw the lewis dot structure
Indicate the coordination forms of Si in silicates.

Chapter 13 Solutions

Atkins' Physical Chemistry

Ch. 13 - Prob. 13A.1AECh. 13 - Prob. 13A.1BECh. 13 - Prob. 13A.2AECh. 13 - Prob. 13A.2BECh. 13 - Prob. 13A.3AECh. 13 - Prob. 13A.3BECh. 13 - Prob. 13A.4AECh. 13 - Prob. 13A.4BECh. 13 - Prob. 13A.5AECh. 13 - Prob. 13A.5BECh. 13 - Prob. 13A.6AECh. 13 - Prob. 13A.6BECh. 13 - Prob. 13A.1PCh. 13 - Prob. 13A.2PCh. 13 - Prob. 13A.4PCh. 13 - Prob. 13A.5PCh. 13 - Prob. 13A.6PCh. 13 - Prob. 13A.7PCh. 13 - Prob. 13B.1DQCh. 13 - Prob. 13B.2DQCh. 13 - Prob. 13B.3DQCh. 13 - Prob. 13B.1AECh. 13 - Prob. 13B.1BECh. 13 - Prob. 13B.2AECh. 13 - Prob. 13B.2BECh. 13 - Prob. 13B.3AECh. 13 - Prob. 13B.3BECh. 13 - Prob. 13B.4AECh. 13 - Prob. 13B.4BECh. 13 - Prob. 13B.7AECh. 13 - Prob. 13B.7BECh. 13 - Prob. 13B.8AECh. 13 - Prob. 13B.8BECh. 13 - Prob. 13B.9AECh. 13 - Prob. 13B.9BECh. 13 - Prob. 13B.10AECh. 13 - Prob. 13B.10BECh. 13 - Prob. 13B.11AECh. 13 - Prob. 13B.11BECh. 13 - Prob. 13B.12AECh. 13 - Prob. 13B.12BECh. 13 - Prob. 13B.4PCh. 13 - Prob. 13B.5PCh. 13 - Prob. 13B.6PCh. 13 - Prob. 13B.7PCh. 13 - Prob. 13B.8PCh. 13 - Prob. 13B.10PCh. 13 - Prob. 13C.1DQCh. 13 - Prob. 13C.2DQCh. 13 - Prob. 13C.1AECh. 13 - Prob. 13C.1BECh. 13 - Prob. 13C.6AECh. 13 - Prob. 13C.6BECh. 13 - Prob. 13C.7AECh. 13 - Prob. 13C.7BECh. 13 - Prob. 13C.3PCh. 13 - Prob. 13C.7PCh. 13 - Prob. 13C.8PCh. 13 - Prob. 13C.9PCh. 13 - Prob. 13D.1DQCh. 13 - Prob. 13D.2DQCh. 13 - Prob. 13D.3DQCh. 13 - Prob. 13D.4DQCh. 13 - Prob. 13D.1AECh. 13 - Prob. 13D.1BECh. 13 - Prob. 13D.1PCh. 13 - Prob. 13D.2PCh. 13 - Prob. 13E.1DQCh. 13 - Prob. 13E.2DQCh. 13 - Prob. 13E.3DQCh. 13 - Prob. 13E.4DQCh. 13 - Prob. 13E.5DQCh. 13 - Prob. 13E.6DQCh. 13 - Prob. 13E.1AECh. 13 - Prob. 13E.1BECh. 13 - Prob. 13E.2AECh. 13 - Prob. 13E.2BECh. 13 - Prob. 13E.3AECh. 13 - Prob. 13E.3BECh. 13 - Prob. 13E.4AECh. 13 - Prob. 13E.4BECh. 13 - Prob. 13E.5AECh. 13 - Prob. 13E.5BECh. 13 - Prob. 13E.6AECh. 13 - Prob. 13E.6BECh. 13 - Prob. 13E.7AECh. 13 - Prob. 13E.7BECh. 13 - Prob. 13E.8AECh. 13 - Prob. 13E.8BECh. 13 - Prob. 13E.9AECh. 13 - Prob. 13E.9BECh. 13 - Prob. 13E.1PCh. 13 - Prob. 13E.2PCh. 13 - Prob. 13E.3PCh. 13 - Prob. 13E.4PCh. 13 - Prob. 13E.7PCh. 13 - Prob. 13E.9PCh. 13 - Prob. 13E.10PCh. 13 - Prob. 13E.11PCh. 13 - Prob. 13E.14PCh. 13 - Prob. 13E.15PCh. 13 - Prob. 13E.16PCh. 13 - Prob. 13E.17PCh. 13 - Prob. 13F.1DQCh. 13 - Prob. 13F.2DQCh. 13 - Prob. 13F.3DQCh. 13 - Prob. 13F.1AECh. 13 - Prob. 13F.1BECh. 13 - Prob. 13F.2AECh. 13 - Prob. 13F.2BECh. 13 - Prob. 13F.3AECh. 13 - Prob. 13F.3BECh. 13 - Prob. 13F.3PCh. 13 - Prob. 13F.4PCh. 13 - Prob. 13F.5PCh. 13 - Prob. 13F.6PCh. 13 - Prob. 13.1IA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY