bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 139DIA

Data Interpretation and Analysis

Read CHEMISTRY IN THE ENVIRONMENT: Water Pollution and the Flint River Water Crisis at the end of Section 12.8. The table shown here features a set of data on lead levels in drinking water in Flint, Michigan, collected by the Virginia Tech team described in the box. The lead levels in water are expressed in units of parts per billion (ppb), which is a way of reporting solution concentration that is similar to mass percent. Mass percent is the number of grams of solute per 100 grams solution, while ppb is the number of grams of solute per 10 9 grams solution. In other words, 1 ppb Pb=1 g Pb/10 9 g solution- Examine the tabulated data and answer the questions that follow-

Sample # Lead level first draw (ppb) Lead level 45-sec flush (ppb) Lead level 2-min flush (ppb)
1 0.344 0.266 0.145
2 8.133 10.77 2.761
3 1.111 0.11 0.123
4 8.007 7.446 3.384
5 1.951 0.048 0.035
6 7.2 1.4 0.2
7 40.63 9.726 6.132
8 1.1 2.5 0.1
9 10.6 1.038 1.294
10 6.2 4.2 2.3
11 4.358 0.822 0.147
12 24.37 8.796 4.347
13 6.609 5.72 1.433
14 4.062 1.099 1.085
15 29.59 3.258 1.843

Lead Levels in Flint Tap Water

Source: FlintWaterStuo‘y org (2015) JLead Results from Tap Water Sampling in Flint, MI during the Flint Water Crisis"

(a) Determine the average value of lead for first draw, 45-second flush, and 2-minute flush (round to three significant figures). (b) Do the data support the idea that running the tap water before taking a sample made the lead levels in the water appear lower? Why might this be the case?

(c) The EPA requires water providers to monitor drinking water at customer taps. If lead concentrations exceed 15 ppb in 10% or more of the taps sampled, the water provider must notify the customer and take steps to control the corrosiveness of the water. If the water provider in Flint had used first-draw samples to monitor lead levels, would it have been required to take action by EPA requirements? If the Flint water provider used 2-minute flush samples, would it have had to take action? Which drawing technique do you think more closely mimics the way residents actually use their water? (d) Using the highest value of lead from the first-draw data set, and assuming a resident drinks 2 L of water per day, calculate the mass of lead that the resident would consume over the course of 1 year. (Assume the water has a density of 1-0 g/mL.)

Blurred answer
06:54
Students have asked these similar questions
Seawater consists of many important elements in the form of salts dissolved in the water. At 25°C the mass percentage of salts in seawater will total 3.5% m/m. The density of seawater at this temperature and salt percentage is 1.024 kg/L. Study the chart and answer the questions below:   1. The chart assumes 1000.0 g of seawater. What volume, Vsoln (L), does this correspond to at 25 °C? 2. The diagram claims that chloride ions make up 55% m/m of all salt ions. Confirm this number.   if possible, I would like handwritten answers with calculations. Thanks :)
An aqueous solution has 0.0065 g of oxygen dissolved in 2.5 L  of water. Calculate the dissolved oxygen concentration of this solution in parts per million. What mass of solute, in mg, is present in a 250 mL sample of potassium chloride solution with a concentration of 4.6 ppm? In some areas, drinking water is fluoridated to reduce tooth decay. The maximum acceptable concentration (MAC) of fluoride ions in drinking water is 1.50 ppm.In Dublin, California, a malfunction occurred in the fluoridation equipment caused fluoride levels to rise as high as 200 ppm. This resulted in many people becoming ill.During the malfunction, 639 kg of fluoride ions where injected into a storage tank of water. Given that the resulting concentration was 200 ppm, calculate the volume, in ML, of the water storage tank.
A dioxin-contaminated water source contains 0.066 % dioxin by mass. How much dioxin is present in 3.652 L of this water? Assume that the density of the solution is 1.047 g/mL.

Chapter 13 Solutions

Introductory Chemistry, Books a la Carte Plus Mastering Chemistry with Pearson eText -- Access Card Package (6th Edition)

Ch. 13 - What mass of ethylene glycol (C2H6O6) must be...Ch. 13 - Prob. 1ECh. 13 - Prob. 2ECh. 13 - Prob. 3ECh. 13 - Explain what like dissolves like means.Ch. 13 - What is solubility?Ch. 13 - Describe what happens when additional solute is...Ch. 13 - 7. Explain the difference between a strong...Ch. 13 - 8. How does gas solubility depend on...Ch. 13 - Prob. 9ECh. 13 - Prob. 10ECh. 13 - 11. When you heat water on a stove, bubbles form...Ch. 13 - Prob. 12ECh. 13 - How does gas solubility depend on pressure? How...Ch. 13 - 14. What is the difference between a dilute...Ch. 13 - 15. Define the concentration units mass percent...Ch. 13 - Prob. 16ECh. 13 - 17. How does the presence of a nonvolatile solute...Ch. 13 - What are colligative properties?Ch. 13 - Prob. 19ECh. 13 - Prob. 20ECh. 13 - 21. Two shipwreck survivors were rescued from a...Ch. 13 - 22 Why are intravenous fluids always isoosmotic...Ch. 13 - Prob. 23ECh. 13 - Prob. 24ECh. 13 - Identify the solute and solvent in each solution....Ch. 13 - Prob. 26ECh. 13 - Pick an appropriate solvent from Table 13.2 to...Ch. 13 - Prob. 28ECh. 13 - What are the dissolved particles in a solution...Ch. 13 - What are the dissolved particles in a solution...Ch. 13 - A solution contains 35 g of Nacl per 100 g of...Ch. 13 - 32. A solution contains 28 g of per 100 g of...Ch. 13 - A KNO3 solution containing 45 g of KNO3 per 100 g...Ch. 13 - Prob. 34ECh. 13 - Refer to Figure 13.4 to determine whether each of...Ch. 13 - Prob. 36ECh. 13 - Prob. 37ECh. 13 - Prob. 38ECh. 13 - Scuba divers breathing air at increased pressure...Ch. 13 - Prob. 40ECh. 13 - Prob. 41ECh. 13 - Prob. 42ECh. 13 - 43. A soft drink contains 42 g of sugar in 311 g...Ch. 13 - A soft drink contains 32 mg of sodium in 309 g of...Ch. 13 - Prob. 45ECh. 13 - Prob. 46ECh. 13 - Prob. 47ECh. 13 - Prob. 48ECh. 13 - Prob. 49ECh. 13 - Prob. 50ECh. 13 - Prob. 51ECh. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - A dioxin-contaminated water source contains 0.085%...Ch. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - Calculate the molarity of each solution. a. 0.127...Ch. 13 - Prob. 60ECh. 13 - Calculate the molarity of each solution. a. 22.6 g...Ch. 13 - Prob. 62ECh. 13 - 63. A 205-mL sample of ocean water contains 6.8 g...Ch. 13 - 64. A 355-mL can of soda pop contains 41 g of...Ch. 13 - Prob. 65ECh. 13 - Prob. 66ECh. 13 - Prob. 67ECh. 13 - Prob. 68ECh. 13 - Prob. 69ECh. 13 - Prob. 70ECh. 13 - Calculate the mass of NaCl in a 35-mL sample of a...Ch. 13 - 72. Calculate the mass of glucose in a 105-mL...Ch. 13 - Prob. 73ECh. 13 - 74. A laboratory procedure calls for making 500.0...Ch. 13 - 75. How many liters of a 0.500 M sucrose solution...Ch. 13 - Prob. 76ECh. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Prob. 79ECh. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - Prob. 82ECh. 13 - Prob. 83ECh. 13 - 84. Describe how you would make 500.0 mL of a...Ch. 13 - To what volume should you dilute 25 mL of a 12 M...Ch. 13 - Prob. 86ECh. 13 - Prob. 87ECh. 13 - Prob. 88ECh. 13 - 89. Determine the volume of 0.150 M NaOH solution...Ch. 13 - Prob. 90ECh. 13 - Consider the reaction:...Ch. 13 - Prob. 92ECh. 13 - Prob. 93ECh. 13 - 94. A 25.0-mL sample of an unknown solution...Ch. 13 - 95. What is the minimum amount of necessary to...Ch. 13 - Prob. 96ECh. 13 - Prob. 97ECh. 13 - Prob. 98ECh. 13 - Prob. 99ECh. 13 - Prob. 100ECh. 13 - Prob. 101ECh. 13 - Prob. 102ECh. 13 - Prob. 103ECh. 13 - Prob. 104ECh. 13 - A glucose solution contains 55.8 g of glucose...Ch. 13 - 106. An ethylene glycol solution contains 21.2 g...Ch. 13 - Prob. 107ECh. 13 - Prob. 108ECh. 13 - Prob. 109ECh. 13 - Prob. 110ECh. 13 - Prob. 111ECh. 13 - Prob. 112ECh. 13 - What is the molarity of an aqueous solution that...Ch. 13 - Prob. 114ECh. 13 - Consider the reaction:...Ch. 13 - Prob. 116ECh. 13 - Prob. 117ECh. 13 - Prob. 118ECh. 13 - Prob. 119ECh. 13 - Prob. 120ECh. 13 - 121. An ethylene glycol solution is made using...Ch. 13 - A sucrose solution is made using 144 g of sucrose...Ch. 13 - A 250.0-mL sample of a 5.00 M glucose (C6H12O6)...Ch. 13 - Prob. 124ECh. 13 - Prob. 125ECh. 13 - 126. An aqueous solution containing 35.9 g of an...Ch. 13 - Prob. 127ECh. 13 - Prob. 128ECh. 13 - A 125-g sample contains only glucose (C6H12O6) and...Ch. 13 - A 13.03-g sample contains only ethylene glycol...Ch. 13 - Consider the molecular views of osmosis cells. For...Ch. 13 - What is wrong with this molecular view of a sodium...Ch. 13 - Prob. 133ECh. 13 - Prob. 134ECh. 13 - Prob. 135QGWCh. 13 - Prob. 136QGWCh. 13 - Prob. 137QGWCh. 13 - Prob. 138QGWCh. 13 - Data Interpretation and Analysis Read CHEMISTRY IN...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY