
Concept explainers
Data Interpretation and Analysis
Read CHEMISTRY IN THE ENVIRONMENT: Water Pollution and the Flint River Water Crisis at the end of Section 12.8. The table shown here features a set of data on lead levels in drinking water in Flint, Michigan, collected by the Virginia Tech team described in the box. The lead levels in water are expressed in units of parts per billion (ppb), which is a way of reporting solution concentration that is similar to mass percent. Mass percent is the number of grams of solute per 100 grams solution, while ppb is the number of grams of solute per
Sample # | Lead level first draw (ppb) | Lead level 45-sec flush (ppb) | Lead level 2-min flush (ppb) |
1 | 0.344 | 0.266 | 0.145 |
2 | 8.133 | 10.77 | 2.761 |
3 | 1.111 | 0.11 | 0.123 |
4 | 8.007 | 7.446 | 3.384 |
5 | 1.951 | 0.048 | 0.035 |
6 | 7.2 | 1.4 | 0.2 |
7 | 40.63 | 9.726 | 6.132 |
8 | 1.1 | 2.5 | 0.1 |
9 | 10.6 | 1.038 | 1.294 |
10 | 6.2 | 4.2 | 2.3 |
11 | 4.358 | 0.822 | 0.147 |
12 | 24.37 | 8.796 | 4.347 |
13 | 6.609 | 5.72 | 1.433 |
14 | 4.062 | 1.099 | 1.085 |
15 | 29.59 | 3.258 | 1.843 |
Lead Levels in Flint Tap Water
Source: FlintWaterStuo‘y org (2015) JLead Results from Tap Water Sampling in Flint, MI during the Flint Water Crisis"
(a) Determine the average value of lead for first draw, 45-second flush, and 2-minute flush (round to three significant figures). (b) Do the data support the idea that running the tap water before taking a sample made the lead levels in the water appear lower? Why might this be the case?
(c) The EPA requires water providers to monitor drinking water at customer taps. If lead concentrations exceed 15 ppb in 10% or more of the taps sampled, the water provider must notify the customer and take steps to control the corrosiveness of the water. If the water provider in Flint had used first-draw samples to monitor lead levels, would it have been required to take action by EPA requirements? If the Flint water provider used 2-minute flush samples, would it have had to take action? Which drawing technique do you think more closely mimics the way residents actually use their water? (d) Using the highest value of lead from the first-draw data set, and assuming a resident drinks 2 L of water per day, calculate the mass of lead that the resident would consume over the course of 1 year. (Assume the water has a density of 1-0 g/mL.)

Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video

Chapter 13 Solutions
Introductory Chemistry (6th Edition)
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Biology (11th Edition)
Anatomy & Physiology (6th Edition)
- if the answer is no reaction than state that and please hand draw!arrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardreciprocal lattices rotates along with the real space lattices of the crystal. true or false?arrow_forwardDeducing the reactants of a Diels-Alder reaction vn the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ O If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Click and drag to start drawing a structure. Product can't be made in one step. Explanation Checkarrow_forward
- Predict the major products of the following organic reaction: Δ ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. Larrow_forward> Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accesarrow_forwardPredict the major products of the following organic reaction: O O + A ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. eserved. Terms of Use | Privacy Center >arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




