
University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 13.72P
One of the brightest comets of the 20th century was Comet Hyakutake, which passed close to the sun in early 1996. The orbital period of this comet is estimated to be about 30,000 years. Find the semi-major axis of this comet’s orbit. Compare it to the average sun-Pluto distance and to the distance to Alpha Centauri, the nearest star to the sun, which is 4.3 light-years distant.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.
If the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.
In the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.
Chapter 13 Solutions
University Physics (14th Edition)
Ch. 13 - A student wrote: The only reason an apple falls...Ch. 13 - If all planets had the same average density, how...Ch. 13 - Is a pound of butler on the earth the same amount...Ch. 13 - Example 13.2 (Section 13.1) shows that the...Ch. 13 - When will you attract the sun more: today at noon,...Ch. 13 - Since the moon is constantly attracted toward the...Ch. 13 - Prob. Q13.7DQCh. 13 - A planet makes a circular orbit with period T...Ch. 13 - The sun pulls on the moon with a force that is...Ch. 13 - Which takes more fuel: a voyage from the earth to...
Ch. 13 - Prob. Q13.11DQCh. 13 - Does the escape speed for an object at the earths...Ch. 13 - If a projectile is fired straight up from the...Ch. 13 - Discuss whether this statement is correct: In the...Ch. 13 - The earth is closer to the sun in November than in...Ch. 13 - A communications firm wants to place a satellite...Ch. 13 - Prob. Q13.17DQCh. 13 - What would Keplers third law be for circular...Ch. 13 - In the elliptical orbit of Comet Hailey shown in...Ch. 13 - Many people believe that orbiting astronauts feel...Ch. 13 - As part of their training before going into orbit,...Ch. 13 - What is the ratio of the gravitational pull of the...Ch. 13 - CP Cavendish Experiment. In the Cavendish balance...Ch. 13 - Rendezvous in Space! A couple of astronauts agree...Ch. 13 - Two uniform spheres, each with mass M and radius...Ch. 13 - Two uniform spheres, each of mass 0.260 kg, are...Ch. 13 - Find the magnitude and direction of the net...Ch. 13 - A typical adult human has a mass of about 70 kg....Ch. 13 - An 8.00-kg point mass and a 12.0-kg point mass are...Ch. 13 - Prob. 13.9ECh. 13 - The point masses m and 2m lie along the x-axis,...Ch. 13 - At what distance above the surface of the earth is...Ch. 13 - The mass of Venus is 81.5% that of the earth, and...Ch. 13 - Prob. 13.13ECh. 13 - Rhea, one of Saturns moons, has a radius of 764 km...Ch. 13 - Calculate the earths gravity force on a 75-kg...Ch. 13 - Prob. 13.16ECh. 13 - Use the results of Example 13.5 (Section 13.3) to...Ch. 13 - Ten days after it was launched toward Mars in...Ch. 13 - A planet orbiting a distant star has radius 3.24 ...Ch. 13 - Prob. 13.20ECh. 13 - Prob. 13.21ECh. 13 - Aura Mission. On July 15, 2004, NASA launched the...Ch. 13 - Two satellites are in circular orbits around a...Ch. 13 - International Space Station. In its orbit each...Ch. 13 - Prob. 13.25ECh. 13 - Prob. 13.26ECh. 13 - The star Rho1 Cancri is 57 light-years from the...Ch. 13 - In March 2006. two small satellites were...Ch. 13 - The dwarf planet Pluto has an elliptical orbit...Ch. 13 - Hot Jupiters. In 2004 astronomers reported the...Ch. 13 - Planets Beyond the Solar System. On October 15,...Ch. 13 - A uniform, spherical, 1000.0-kg shell has a radius...Ch. 13 - A uniform, solid, 1000.0-kg sphere has a radius of...Ch. 13 - CALC A thin, uniform rod has length L and mass M....Ch. 13 - Prob. 13.35ECh. 13 - A Visit to Santa. You decide to visit Santa Claus...Ch. 13 - The acceleration due to gravity at the north pole...Ch. 13 - Mini Black Holes. Cosmologists have speculated...Ch. 13 - Prob. 13.39ECh. 13 - In 2005 astronomers announced the discovery of a...Ch. 13 - Neutron stars, such as the one at the center of...Ch. 13 - Four identical masses of 8.00 kg each are placed...Ch. 13 - Three uniform spheres are fixed at the positions...Ch. 13 - CP Exploring Europa. There is strong evidence that...Ch. 13 - A uniform sphere with mass 50.0 kg is held with...Ch. 13 - Mission to Titan. On December 25, 2004, the...Ch. 13 - Prob. 13.47PCh. 13 - At a certain instant, the earth, the moon, and a...Ch. 13 - Prob. 13.49PCh. 13 - CP Submarines on Europa. Some scientists are eager...Ch. 13 - What is the escape speed from a 300-km-diameter...Ch. 13 - A landing craft with mass 12,500 kg is in a...Ch. 13 - Planet X rotates in the same manner as the earth,...Ch. 13 - (a) Suppose you are at the earths equator and...Ch. 13 - CP An astronaut, whose mission is to go where no...Ch. 13 - CP Your starship, the Aimless Wanderer, lands on...Ch. 13 - CP You are exploring a distant planet. When your...Ch. 13 - The 0.100-kg sphere in Fig. P13.58 is released...Ch. 13 - An unmanned spacecraft is in a circular orbit...Ch. 13 - Mass of a Comet. On July 4, 2005, the NASA...Ch. 13 - Falling Hammer. A hammer with mass m is dropped...Ch. 13 - Prob. 13.62PCh. 13 - Prob. 13.63PCh. 13 - Prob. 13.64PCh. 13 - Prob. 13.65PCh. 13 - The planet Uranus has a radius of 25,360 km and a...Ch. 13 - Prob. 13.67PCh. 13 - A rocket with mass 5.00 103 kg is in a circular...Ch. 13 - A 5000-kg spacecraft is in a circular orbit 2000...Ch. 13 - Prob. 13.70PCh. 13 - CALC Planets are not uniform inside. Normally,...Ch. 13 - One of the brightest comets of the 20th century...Ch. 13 - CALC An object in the shape of a thin ring has...Ch. 13 - CALC A uniform wire with mass M and length L is...Ch. 13 - Prob. 13.75PCh. 13 - DATA For each of the eight planets Mercury to...Ch. 13 - DATA For a spherical planet with mass M, volume V,...Ch. 13 - DATA For a planet in our solar system, assume that...Ch. 13 - CHALLENGE PROBLEMS 13.79Interplanetary Navigation....Ch. 13 - CP Tidal Forces near a Black Hole. An astronaut...Ch. 13 - CALC Mass M is distributed uniformly over a disk...Ch. 13 - EXOPLANETS. As planets with a wide variety of...Ch. 13 - EXOPLANETS. As planets with a wide variety of...Ch. 13 - EXOPLANETS. As planets with a wide variety of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If all of Earths nitrogen-fixing prokaryotes were to die suddenly, what would happen to the concentration of ni...
Biology: Life on Earth with Physiology (11th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forward
- This one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forward
- Consider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forwardYou are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forward
- Three carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forwardA girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.) (a) Calculate the average exhaust speed of the engine (in m/s). m/s (b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate. m/sarrow_forwardTwo objects of masses m₁ 0.48 kg and m₂ = 0.86 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k 260 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.4 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b). (Let the positive direction be to the right. Indicate the direction with the sign of your answer.) m/s V1 V2= m1 m/s k m2 a す。 k m2 m1 barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning


University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY