(a)
Interpretation:
Concentration of the reactant has to be calculated that will be present after
(a)
Answer to Problem 13.50QE
The concentration of the reactant that will be present after
Explanation of Solution
Given initial concentration of the reactant is
Therefore, the rate constant of the reaction is
Integrated rate law for the first order reaction is given as follows;
Where,
Substituting the values in above equation, the concentration of the reactant that will be present after
Therefore, the concentration of reactant that remains after
(b)
Interpretation:
The time that will be taken for the concentration of the reactant to decrease to one-eighth of the initial value has to be calculated.
(b)
Answer to Problem 13.50QE
Time taken for the reactant concentration to get reduced to one-eighth of initial value is
Explanation of Solution
Given initial concentration of the reactant is
Therefore, the rate constant of the reaction is
Concentration of the reactant reduced to one-eighth is calculated as shown below;
Integrated rate law for the first order reaction is given as follows;
Where,
Substituting the values in above equation, the time taken for the concentration of the reactant to get reduced to one-eighth of the initial value can be calculated as follows;
Therefore, the time taken for the concentration of the reactant to get reduced to one-eighth of the initial value is
(c)
Interpretation:
The time that will be taken for the concentration of the reactant to decrease to
(c)
Answer to Problem 13.50QE
Time taken for the reactant concentration to get reduced to
Explanation of Solution
Given initial concentration of the reactant is
Therefore, the rate constant of the reaction is
Integrated rate law for the first order reaction is given as follows;
Where,
Substituting the values in above equation, the time taken for the concentration of the reactant to get reduced to
Therefore, the time taken for the concentration of the reactant to get reduced to
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry Principles And Practice
- X Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forwardNonearrow_forward1A H 2A Li Be Use the References to access important values if needed for this question. 8A 3A 4A 5A 6A 7A He B C N O F Ne Na Mg 3B 4B 5B 6B 7B 8B-1B 2B Al Si P 1B 2B Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha ****** Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Analyze the following reaction by looking at the electron configurations given below each box. Put a number and a symbol in each box to show the number and kind of the corresponding atom or ion. Use the smallest integers possible. cation anion + + Shell 1: 2 Shell 2: 8 Shell 3: 1 Shell 1 : 2 Shell 2 : 6 Shell 1 : 2 Shell 2: 8 Shell 1: 2 Shell 2: 8arrow_forward
- Nonearrow_forwardIV. Show the detailed synthesis strategy for the following compounds. a. CH3CH2CH2CH2Br CH3CH2CCH2CH2CH3arrow_forwardDo the electrons on the OH participate in resonance with the ring through a p orbital? How many pi electrons are in the ring, 4 (from the two double bonds) or 6 (including the electrons on the O)?arrow_forward
- Predict and draw the product of the following organic reaction:arrow_forwardNonearrow_forwardRedraw the molecule below as a skeletal ("line") structure. Be sure to use wedge and dash bonds if necessary to accurately represent the direction of the bonds to ring substituents. Cl. Br Click and drag to start drawing a structure. : ☐ ☑ Parrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning