![CHEMISTRY:MOLECULAR NATURE...-ALEKS 360](https://www.bartleby.com/isbn_cover_images/9781259916083/9781259916083_largeCoverImage.gif)
(a)
Interpretation:
Whether
Concept introduction:
The charge density is defined as the ratio of ionic charge and volume. It is directly proportional to the ionic charge and inversely proportional to the ionic volume. Volume is directly related to the ionic size. Smaller ion will have the charge spread over a small space so charge density will be more and vice-versa.
The enthalpy change of hydration is the enthalpy change when one mole of the ionic species is dissolved in water to give a solution of infinite dilution. It is represented by
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.34P
Explanation of Solution
Both sodium and cesium are present in the same period of the periodic table. But sodium lies above cesium so its ionic volume is less than that of cesium and therefore
(b)
Interpretation:
Whether
Concept introduction:
The charge density is defined as the ratio of ionic charge and volume. It is directly proportional to the ionic charge and inversely proportional to the ionic volume. Volume is directly related to the ionic size. Smaller ion will have the charge spread over a small space so charge density will be more and vice-versa.
The enthalpy change of hydration is the enthalpy change when one mole of the ionic species is dissolved in water to give a solution of infinite dilution. It is represented by
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.34P
Explanation of Solution
Both rubidium and strontium are present in the same period of the periodic table. But strontium lies to the right of rubidium so its size and therefore volume are small. Also, the charge on
(c)
Interpretation:
Whether
Concept introduction:
The charge density is defined as the ratio of ionic charge and volume. It is directly proportional to the ionic charge and inversely proportional to the ionic volume. Volume is directly related to the ionic size. Smaller ion will have the charge spread over a small space so charge density will be more and vice-versa.
The enthalpy change of hydration is the enthalpy change when one mole of the ionic species is dissolved in water to give a solution of infinite dilution. It is represented by
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.34P
Explanation of Solution
Both sodium and chlorine are present in the same period of the periodic table. But cations are smaller than anions so the charge density of
(d)
Interpretation:
Whether
Concept introduction:
The charge density is defined as the ratio of ionic charge and volume. It is directly proportional to the ionic charge and inversely proportional to the ionic volume. Volume is directly related to the ionic size. Smaller ion will have the charge spread over a small space so charge density will be more and vice-versa.
The enthalpy change of hydration is the enthalpy change when one mole of the ionic species is dissolved in water to give a solution of infinite dilution. It is represented by
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.34P
Explanation of Solution
(e)
Interpretation:
Whether
Concept introduction:
The charge density is defined as the ratio of ionic charge and volume. It is directly proportional to the ionic charge and inversely proportional to the ionic volume. Volume is directly related to the ionic size. Smaller ion will have the charge spread over a small space so charge density will be more and vice-versa.
The enthalpy change of hydration is the enthalpy change when one mole of the ionic species is dissolved in water to give a solution of infinite dilution. It is represented by
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.34P
Explanation of Solution
Oxygen and sulfur are present in the same group of the periodic table. But oxygen lies above sulfur so its size and therefore volume is smaller than that of sulfur. So the charge density of
(f)
Interpretation:
Whether
Concept introduction:
The charge density is defined as the ratio of ionic charge and volume. It is directly proportional to the ionic charge and inversely proportional to the ionic volume. Volume is directly related to the ionic size. Smaller ion will have the charge spread over a small space so charge density will be more and vice-versa.
The enthalpy change of hydration is the enthalpy change when one mole of the ionic species is dissolved in water to give a solution of infinite dilution. It is represented by
(f)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.34P
Explanation of Solution
Magnesium and barium are present in the same group of the periodic table. But magnesium lies above barium so its size, as well as volume, is smaller than that of barium. So the charge density of
(g)
Interpretation:
Whether
Concept introduction:
The charge density is defined as the ratio of ionic charge and volume. It is directly proportional to the ionic charge and inversely proportional to the ionic volume. Volume is directly related to the ionic size. Smaller ion will have the charge spread over a small space so charge density will be more and vice-versa.
The enthalpy change of hydration is the enthalpy change when one mole of the ionic species is dissolved in water to give a solution of infinite dilution. It is represented by
(g)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.34P
Explanation of Solution
The ionic charge of
(h)
Interpretation:
Whether
Concept introduction:
The charge density is defined as the ratio of ionic charge and volume. It is directly proportional to the ionic charge and inversely proportional to the ionic volume. Volume is directly related to the ionic size. Smaller ion will have the charge spread over a small space so charge density will be more and vice-versa.
The enthalpy change of hydration is the enthalpy change when one mole of the ionic species is dissolved in water to give a solution of infinite dilution. It is represented by
(h)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.34P
Explanation of Solution
The ionic charge of
Want to see more full solutions like this?
Chapter 13 Solutions
CHEMISTRY:MOLECULAR NATURE...-ALEKS 360
- Write the calculate the reaction quotient for the following system, if the partial pressure of all reactantsand products is 0.15 atm: NOCl (g) ⇌ NO (g) + Cl2 (g) H = 20.5 kcalarrow_forwardComplete the spectroscopy with structurearrow_forwardcould you answer the questions and draw the complete mechanismarrow_forward
- Complete the spectroscopy with structurearrow_forwardCalculate the reaction quotient for the reaction:NaOH (s) ⇌ Na+ (aq)+ OH- (aq) + 44.4 kJ [Na+] = 4.22 M [OH-] = 6.41 Marrow_forwardGiven the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forward
- Match each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forwardWrite the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forwardWrite the reaction quotient for: Pb2+(aq) + 2 Cl- (aq) ⇌ PbCl2(s)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)