CHEMISTRY:MOLECULAR NATURE...-ALEKS 360
CHEMISTRY:MOLECULAR NATURE...-ALEKS 360
8th Edition
ISBN: 9781259916083
Author: SILBERBERG
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.139P

(a)

Interpretation Introduction

Interpretation:

The molar mass of the fragment is to be calculated.

Concept introduction:

The osmotic pressure is defined as the measure of the tendency of a solution to take in pure solvent via osmosis. It is defined as the minimum pressure that is to be applied to the solution to prevent the inward flow of the pure solvent across the semipermeable membrane. Osmosis occurs when two solutions have different concentrations of solute and are separated by a semipermeable membrane.

The formula to calculate the osmotic pressure of the solution is as follows:

=MRT (1)

Here, is the osmotic pressure.

M is the molarity of the solution.

R is universal gas constant.

T is the absolute temperature.

Molarity is defined as the number of moles of solute that are dissolved in one litre of solution. It is represented by M and its unit is mol/L.

The formula to calculate the molarity of the solution is as follows:

Molarity=amount(mol)ofsolutevolume (L)ofsolution (2)

The conversion factor to convert °C to °K is as follows:

T(°K)=T(°C)+273.15K

(a)

Expert Solution
Check Mark

Answer to Problem 13.139P

The molar mass of the fragment is 1.82×104g/mol.

Explanation of Solution

Rearrange equation (1) to calculate the molarity of the solution as follows:

M=RT (3)

Substitute 0.340torr for , 0.0821Latm/molK for R and 25°C for T in equation (3).

M=(0.340torr)(1atm760torr)(0.0821Latm/molK)(25°C+273.15)K=1.828544×105M

Rearrange equation (2) to calculate the amount of solute as follows:

Amountofsolute=(Molarity)(Volume ofsolution) (4)

Substitute 1.828544×105M for the molarity and 30mL for the volume of solution in equation (4).

Amountofsolute=(1.828544×105mol1L)(30mL)(103L1mL)=5.48563×105mol

The molar mass of the compound is calculated as follows:

Molar mass=Given massNumber of moles (5)

Substitute 5.48563×105mol for the number of moles and 10mg for the given mass in equation (5).

Molar mass=(10mg)(103g1mg)5.48563×105mol=1.82294×104g/mol=1.82×104g/mol

Conclusion

The molar mass of the fragment is 1.82×104g/mol.

(b)

Interpretation Introduction

Interpretation:

The depression in freezing point is to be calculated.

Concept introduction:

The freezing point is the temperature at which both the solid and liquid phases coexist in equilibrium. It is the temperature at which the vapor pressure of the substance in the liquid state becomes equal to the vapor pressure in a solid state.

The formula to calculate the change in freezing point is as follows:

ΔTf=ikfm (6)

Here, ΔTf is the change in freezing point.

i is van’t Hoff factor.

kf is the freezing point depression constant.

m is the molality of the solution.

Molality is the measure of the concentration of solute in the solution. It is the amount of solute that is dissolved in one kilogram of the solvent. It is represented by m and its unit is moles per kilograms. The solute is the substance that is present in a smaller amount and solvent is the substance that is present in a larger amount.

The formula to calculate the density of the solution is as follows:

Density of solution=Mass of solutionVolume of solution (7)

(b)

Expert Solution
Check Mark

Answer to Problem 13.139P

The freezing point of the solution is 3.41×105°C.

Explanation of Solution

Rearrange equation (7) to calculate the mass of the solution as follows:

Mass of solution=(Density of solution)(Volume of solution) (8)

Substitute 0.997g/mL for the density of the solution and 30mL for the volume of solution in equation (8).

Mass of solution=(0.997g1mL)(30mL)=29.91g

The formula to calculate the mass of the solution is as follows:

Mass of solution=Mass of solute+Mass of solvent (9)

Rearrange equation (9) to calculate the mass of the solvent as follows:

Mass of solvent=Mass of solutionMass of solute (10)

Substitute 29.91g for the mass of solution and 10mg for the mass of solute in equation (10) to calculate the mass of water.

Mass of water=(29.91g(10 mg)(103g1mg))(1kg103g)=0.0299kg

The formula to calculate the molality of the solution is as follows:

Molality=amount(mol)ofsolutemass(kg)ofsolvent (11)

Substitute 5.48563×105mol for the number of moles and 0.0299kg for the mass of solvent in equation (11).

Molality=5.48563×105mol0.0299kg=1.83466×105m

Substitute 1.83466×105m for m, 1 for i, 1.86°C/m for kf in equation (6).

ΔTf=ikfm=(1)(1.86°C/m)(1.83466×105m)=3.412×105°C=3.41×105°C

But this is the change in freezing point of the solution.

The freezing point of the solution is calculated as follows:

Tf=Tf(solvent)Tf(solution) (12)

Substitute 0°C for Tf(solvent) and 3.412×105°C for  Tf(solution) in equation (120.

Tf=Tf(solvent)Tf(solution)=0°C3.412×105°C=3.412×105°C=3.41×105°C

Conclusion

The freezing point of the solution is 3.41×105°C.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?
3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)
2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2

Chapter 13 Solutions

CHEMISTRY:MOLECULAR NATURE...-ALEKS 360

Ch. 13.5 - Prob. 13.6AFPCh. 13.5 - Prob. 13.6BFPCh. 13.6 - Calculate the vapor pressure lowering of a...Ch. 13.6 - Prob. 13.7BFPCh. 13.6 - Prob. 13.8AFPCh. 13.6 - Prob. 13.8BFPCh. 13.6 - Prob. 13.9AFPCh. 13.6 - Prob. 13.9BFPCh. 13.6 - A solution is made by dissolving 31.2 g of...Ch. 13.6 - Prob. 13.10BFPCh. 13.7 - Prob. B13.1PCh. 13.7 - Prob. B13.2PCh. 13 - Prob. 13.1PCh. 13 - Prob. 13.2PCh. 13 - Prob. 13.3PCh. 13 - Which would you expect to be more effective as a...Ch. 13 - Prob. 13.5PCh. 13 - Prob. 13.6PCh. 13 - Prob. 13.7PCh. 13 - Prob. 13.8PCh. 13 - Prob. 13.9PCh. 13 - Prob. 13.10PCh. 13 - Prob. 13.11PCh. 13 - What is the strongest type of intermolecular force...Ch. 13 - Prob. 13.13PCh. 13 - Prob. 13.14PCh. 13 - Prob. 13.15PCh. 13 - Prob. 13.16PCh. 13 - Prob. 13.17PCh. 13 - Prob. 13.18PCh. 13 - Prob. 13.19PCh. 13 - Prob. 13.20PCh. 13 - Prob. 13.21PCh. 13 - Prob. 13.22PCh. 13 - Prob. 13.23PCh. 13 - What is the relationship between solvation and...Ch. 13 - Prob. 13.25PCh. 13 - Prob. 13.26PCh. 13 - Prob. 13.27PCh. 13 - Prob. 13.28PCh. 13 - Prob. 13.29PCh. 13 - Prob. 13.30PCh. 13 - Prob. 13.31PCh. 13 - Prob. 13.32PCh. 13 - Prob. 13.33PCh. 13 - Prob. 13.34PCh. 13 - Prob. 13.35PCh. 13 - Use the following data to calculate the combined...Ch. 13 - Use the following data to calculate the combined...Ch. 13 - State whether the entropy of the system increases...Ch. 13 - Prob. 13.39PCh. 13 - Prob. 13.40PCh. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Prob. 13.43PCh. 13 - Prob. 13.44PCh. 13 - For a saturated aqueous solution of each of the...Ch. 13 - Prob. 13.46PCh. 13 - Prob. 13.47PCh. 13 - Prob. 13.48PCh. 13 - Prob. 13.49PCh. 13 - Prob. 13.50PCh. 13 - Prob. 13.51PCh. 13 - Prob. 13.52PCh. 13 - Prob. 13.53PCh. 13 - Prob. 13.54PCh. 13 - Prob. 13.55PCh. 13 - Calculate the molarity of each aqueous...Ch. 13 - Calculate the molarity of each aqueous...Ch. 13 - Prob. 13.58PCh. 13 - Calculate the molarity of each aqueous...Ch. 13 - How would you prepare the following aqueous...Ch. 13 - Prob. 13.61PCh. 13 - Prob. 13.62PCh. 13 - Prob. 13.63PCh. 13 - Prob. 13.64PCh. 13 - Prob. 13.65PCh. 13 - Prob. 13.66PCh. 13 - Prob. 13.67PCh. 13 - Prob. 13.68PCh. 13 - Prob. 13.69PCh. 13 - Prob. 13.70PCh. 13 - Prob. 13.71PCh. 13 - Prob. 13.72PCh. 13 - Prob. 13.73PCh. 13 - Prob. 13.74PCh. 13 - Prob. 13.75PCh. 13 - Prob. 13.76PCh. 13 - Prob. 13.77PCh. 13 - Prob. 13.78PCh. 13 - Prob. 13.79PCh. 13 - Prob. 13.80PCh. 13 - Prob. 13.81PCh. 13 - What are the most important differences between...Ch. 13 - Prob. 13.83PCh. 13 - Prob. 13.84PCh. 13 - Prob. 13.85PCh. 13 - Prob. 13.86PCh. 13 - Prob. 13.87PCh. 13 - Prob. 13.88PCh. 13 - Classify each substance as a strong electrolyte,...Ch. 13 - Prob. 13.90PCh. 13 - Prob. 13.91PCh. 13 - Which solution has the lower freezing point? 11.0...Ch. 13 - Prob. 13.93PCh. 13 - Prob. 13.94PCh. 13 - Prob. 13.95PCh. 13 - Prob. 13.96PCh. 13 - Prob. 13.97PCh. 13 - Prob. 13.98PCh. 13 - Prob. 13.99PCh. 13 - The boiling point of ethanol (C2H5OH) is 78.5°C....Ch. 13 - Prob. 13.101PCh. 13 - Prob. 13.102PCh. 13 - Prob. 13.103PCh. 13 - Prob. 13.104PCh. 13 - Prob. 13.105PCh. 13 - Prob. 13.106PCh. 13 - Prob. 13.107PCh. 13 - Prob. 13.108PCh. 13 - Prob. 13.109PCh. 13 - Prob. 13.110PCh. 13 - Prob. 13.111PCh. 13 - In a study designed to prepare new...Ch. 13 - The U.S. Food and Drug Administration lists...Ch. 13 - Prob. 13.114PCh. 13 - Prob. 13.115PCh. 13 - Prob. 13.116PCh. 13 - In a movie theater, you can see the beam of...Ch. 13 - Prob. 13.118PCh. 13 - Prob. 13.119PCh. 13 - Prob. 13.120PCh. 13 - Prob. 13.121PCh. 13 - Gold occurs in seawater at an average...Ch. 13 - Prob. 13.123PCh. 13 - Prob. 13.124PCh. 13 - Prob. 13.125PCh. 13 - Prob. 13.126PCh. 13 - Pyridine (right) is an essential portion of many...Ch. 13 - Prob. 13.128PCh. 13 - Prob. 13.129PCh. 13 - Prob. 13.130PCh. 13 - Prob. 13.131PCh. 13 - Prob. 13.132PCh. 13 - Prob. 13.133PCh. 13 - Prob. 13.134PCh. 13 - Prob. 13.135PCh. 13 - Prob. 13.136PCh. 13 - Prob. 13.137PCh. 13 - Prob. 13.138PCh. 13 - Prob. 13.139PCh. 13 - Prob. 13.140PCh. 13 - Prob. 13.141PCh. 13 - Prob. 13.142PCh. 13 - Prob. 13.143PCh. 13 - The release of volatile organic compounds into the...Ch. 13 - Although other solvents are available,...Ch. 13 - Prob. 13.146PCh. 13 - Prob. 13.147PCh. 13 - Prob. 13.148PCh. 13 - Prob. 13.149PCh. 13 - Prob. 13.150PCh. 13 - Prob. 13.151PCh. 13 - Suppose coal-fired power plants used water in...Ch. 13 - Urea is a white crystalline solid used as a...Ch. 13 - Prob. 13.154PCh. 13 - Prob. 13.155PCh. 13 - Prob. 13.156PCh. 13 - Prob. 13.157PCh. 13 - Prob. 13.158PCh. 13 - Prob. 13.159PCh. 13 - Prob. 13.160PCh. 13 - Prob. 13.161PCh. 13 - Prob. 13.162PCh. 13 - Figure 12.11 shows the phase changes of pure...Ch. 13 - KNO3, KClO3, KCl, and NaCl are recrystallized as...Ch. 13 - Prob. 13.165PCh. 13 - Prob. 13.166PCh. 13 - Prob. 13.167P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY