Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card
11th Edition
ISBN: 9781337128391
Author: Darrell Ebbing, Steven D. Gammon
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.27QP

Kinetics I

Consider the hypothetical reaction A(g) + 2B(g) h C(g). The four containers below represent this reaction being run with different initial amounts of A and B. Assume that the volume of each container is 1.0 L. The reaction is second order with respect to A and first order with respect to B.

Chapter 13, Problem 13.27QP, Kinetics I Consider the hypothetical reaction A(g) + 2B(g) h C(g). The four containers below

  1. a Based on the information presented in the problem, write the rate law for the reaction.
  2. b Which of the containers, W, X, Y, or Z, would have the greatest reaction rate? Justify your answer.
  3. c Which of the containers would have the lowest reaction rate? Explain.
  4. d If the volume of the container X were increased to 2.0 L, how would the rate of the reaction in this larger container compare to the rate of reaction run in the 1.0-L container X? (Assume that the number of A and B atoms is the same in each case.)
  5. e If the temperature in container W were increased, what impact would this probably have on the rate of reaction? Why?
  6. f If you want to double the rate of reaction in container X, what are some things that you could do to the concentration(s) of A and B?
  7. g In which container would you observe the slowest rate of formation of C?
  8. h Assuming that A and B are not in great excess, which would have the greater impact on the rate of reaction in container W: removing a unit of B or removing a unit of A? Explain.
  9. i Describe how the rate of consumption of A compares to the rate of consumption of B. If you cannot answer this question, what additional information do you need to provide an answer?
  10. j If the product C were removed from the container as it formed, what effect would this have on the rate of the reaction?

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To give rate of the reaction

Rate of the reaction is given as Rate=k[A]2[B]

 (b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To identify and justify the container that has greatest rate of reaction

The container with the highest rate of reaction will have highest value of [A]2[B] .

For container W, the product will be (2)2(3)=12

For container X, the product will be (2)2(4)=16

For container Y, the product will be (3)2(2)=18

For container Z, the product will be (5)2(0)=0

Hence, the container Y will have the highest rate of reaction.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To identify and justify the container that has lowest rate of reaction

Since the container Z has one of the concentrations of reactant as zero, container Z will have the lowest rate of reaction.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To compare the rate of reaction in the larger container to the rate of reaction in 1.0L container X

The concentrations of A and B are decreased by factor 2, when the volume of the container is two times from 1.0Lto2.0L .  This represents a reduction in the rate of (12)2(12)=18

Therefore, the rate of reaction in larger container is 18 times the rate in smaller container.

(e)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To give the impact on the rate of reaction if temperature is increased in container W

Increase in temperature, increases the rate of temperature,

At higher temperature molecules collide with other molecules at greater rate and possess greater kinetic energy.

Thus, part of collision with energy in addition of activation energy is greater with increase in rate of reaction.

(f)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To explain about the concentrations of AandB if the rate in container X is doubled

The rate of the reactions doubles with rate of products [A]2[B] . This is achieved on doubling the concentration of [B] with no change in the concentration of [A] .  Another possibility is doubling the concentration of [A] with reducing concentration of [B] by one-half.

(g)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To identify the container that shows slowest rate for the formation of C

Container Z shows the slowest rate for the formation of C because its reaction rate is zero.

(h)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To identify and explain if removing A or B would have higher impact on rate of reaction of container W

Reaction in A is second order.

Reaction in B is first order.

Changes in concentration of A would have higher impact on rate of reaction; hence removing A would have higher impact on rate of reaction of container W

(i)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To compare the rate of consumptions of A and B

The rate of reactions is,

-Δ[A]Δt=-12Δ[B]Δt

The rate of consumption of A is half the rate of consumption of B.

(j)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The explanations for the given set of statements have to be given.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.

The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.

Rate law can be determined by the slow step or otherwise called as rate-determining step.

Explanation of Solution

To give the rate of reaction if product is taken away from the container

Removing C from the container shoes no effect on the reaction rate because [C] doesn’t appear in the rate law.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate the differences between energy levels in J, Einstein's coefficients of estimated absorption and spontaneous emission and life time media for typical electronic transmissions (vnm = 1015 s-1) and vibrations (vnm = 1013 s-1) . Assume that the dipolar transition moments for these transactions are in the order of 1 D.Data: 1D = 3.33564x10-30 C m; epsilon0 = 8.85419x10-12 C2m-1J-1
Don't used Ai solution
Please correct answer and don't used hand raiting

Chapter 13 Solutions

Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card

Ch. 13.5 - Consider the following potential-energy curves for...Ch. 13.6 - Acetaldehyde, CH3CHO, decomposes when heated....Ch. 13.7 - Prob. 13.8ECh. 13.7 - Prob. 13.9ECh. 13.7 - Prob. 13.10ECh. 13.8 - The iodide-ion-catalyzed decomposition of hydrogen...Ch. 13.8 - Prob. 13.12ECh. 13.8 - Prob. 13.6CCCh. 13 - List the four variables or factors that can affect...Ch. 13 - Define the rate of reaction of HBr in the...Ch. 13 - Give at least two physical properties that might...Ch. 13 - A rate of reaction depends on four variables...Ch. 13 - Prob. 13.5QPCh. 13 - The reaction...Ch. 13 - The rate of a reaction is quadrupled when the...Ch. 13 - Prob. 13.8QPCh. 13 - The reaction A(g)B(g)+C(g) is known to be first...Ch. 13 - Prob. 13.10QPCh. 13 - Prob. 13.11QPCh. 13 - Sketch a potential-energy diagram for the...Ch. 13 - Draw a structural formula for the activated...Ch. 13 - Prob. 13.14QPCh. 13 - Prob. 13.15QPCh. 13 - Prob. 13.16QPCh. 13 - Prob. 13.17QPCh. 13 - Prob. 13.18QPCh. 13 - The dissociation of N2O4 into NO2, N2O4(g)2NO2(g)...Ch. 13 - Prob. 13.20QPCh. 13 - Prob. 13.21QPCh. 13 - Prob. 13.22QPCh. 13 - You are running the reaction 2A+BC+3D. Your lab...Ch. 13 - At a constant temperature, which of the following...Ch. 13 - Consider the reaction E+FG+H, which has the...Ch. 13 - The hypothetical reaction A+B+CD+E has the rate...Ch. 13 - Kinetics I Consider the hypothetical reaction A(g)...Ch. 13 - Kinetics II You and a friend are working together...Ch. 13 - Consider the reaction 3A2B+C. a One rate...Ch. 13 - Given the reaction 2A+BC+3D, can you write the...Ch. 13 - The reaction 2A(g)A2(g) is being run in each of...Ch. 13 - Prob. 13.32QPCh. 13 - You perform some experiments for the reaction AB+C...Ch. 13 - A friend of yours runs a reaction and generates...Ch. 13 - Prob. 13.35QPCh. 13 - You carry out the following reaction by...Ch. 13 - Prob. 13.37QPCh. 13 - The chemical reaction AB+C has a rate constant...Ch. 13 - Relate the rate of decomposition of NH4NO2 to the...Ch. 13 - For the reaction of hydrogen with iodine...Ch. 13 - To obtain the rate of the reaction...Ch. 13 - To obtain the rate of the reaction...Ch. 13 - Ammonium nitrite, NH4NO2, decomposes in solution,...Ch. 13 - Iron(III) chloride is reduced by tin(II) chloride....Ch. 13 - Azomethane, CH3NNCH3, decomposes according to the...Ch. 13 - Nitrogen dioxide, NO2, decomposes upon heating to...Ch. 13 - Hydrogen sulfide is oxidized by chlorine in...Ch. 13 - For the reaction of nitrogen monoxide, NO, with...Ch. 13 - Prob. 13.49QPCh. 13 - Prob. 13.50QPCh. 13 - In experiments on the decomposition of azomethane....Ch. 13 - Ethylene oxide. C2H4O, decomposes when heated to...Ch. 13 - Nitrogen monoxide NO, reacts with hydrogen to give...Ch. 13 - In a kinetic study of the reaction...Ch. 13 - Chlorine dioxide, ClO2, is a reddish-yellow gas...Ch. 13 - Iodide ion is oxidized to hypoiodite ion, IO, by...Ch. 13 - Sulfuryl chloride, SO2Cl2, decomposes when heated....Ch. 13 - Cyclopropane, C3H6, is converted to its isomer...Ch. 13 - A reaction of the form aA Products is second-order...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - Ethyl chloride, CH3CH2Cl, used to produce...Ch. 13 - Cyclobutane, C4H8, consisting of molecules in...Ch. 13 - Methyl isocyanide, CH3NC, isomerizes, when heated,...Ch. 13 - Dinitrogen pentoxide, N2O5, decomposes when heated...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - It is found that a gas undergoes a zero-order...Ch. 13 - The reaction AB+C is found to be zero order. If it...Ch. 13 - Chlorine dioxide oxidizes iodide ion in aqueous...Ch. 13 - Methyl acetate, CH3COOCH3, reacts in basic...Ch. 13 - Sketch a potential-energy diagram for the reaction...Ch. 13 - Sketch a potential-energy diagram for the...Ch. 13 - In a series of experiments on the decomposition of...Ch. 13 - The reaction 2NOCl(g)2NO(g)+Cl2(g) has...Ch. 13 - The rate of a particular reaction increases by a...Ch. 13 - The rate of a particular reaction quadruples when...Ch. 13 - The following values of the rate constant were...Ch. 13 - The following values of the rate constant were...Ch. 13 - Nitrogen monoxide, NO, is believed to react with...Ch. 13 - The decomposition of ozone is believed to occur in...Ch. 13 - Identify the molecularity of each of the following...Ch. 13 - Prob. 13.86QPCh. 13 - Write a rate equation, showing the dependence of...Ch. 13 - Prob. 13.88QPCh. 13 - The isomerization of cyclopropane, C3H6, is...Ch. 13 - The thermal decomposition of nitryl chloride,...Ch. 13 - The reaction H2(g)+I2(g)2HI(g) may occur by the...Ch. 13 - Ozone decomposes to oxygen gas. 2O3(g)3O2(g) A...Ch. 13 - The following is a possible mechanism for a...Ch. 13 - Consider the following mechanism for a reaction in...Ch. 13 - A study of the decomposition of azomethane,...Ch. 13 - Nitrogen dioxide decomposes when heated....Ch. 13 - Prob. 13.97QPCh. 13 - Prob. 13.98QPCh. 13 - Methyl acetate reacts in acidic solution....Ch. 13 - Benzene diazonium chloride, C6H5NNCl, decomposes...Ch. 13 - What is the half-life of methyl acetate hydrolysis...Ch. 13 - What is the half-life of benzene diazonium...Ch. 13 - A compound decomposes by a first-order reaction....Ch. 13 - A compound decomposes by a first-order reaction....Ch. 13 - Butadiene can undergo the following reaction to...Ch. 13 - Prob. 13.106QPCh. 13 - Prob. 13.107QPCh. 13 - A second-order decomposition reaction run at 550oC...Ch. 13 - Prob. 13.109QPCh. 13 - Prob. 13.110QPCh. 13 - Prob. 13.111QPCh. 13 - Prob. 13.112QPCh. 13 - The decomposition of nitrogen dioxide,...Ch. 13 - Prob. 13.114QPCh. 13 - Prob. 13.115QPCh. 13 - Prob. 13.116QPCh. 13 - Nitryl bromide, NO2Br, decomposes into nitrogen...Ch. 13 - Tertiary butyl chloride reacts in basic solution...Ch. 13 - Urea, (NH2)2CO, can be prepared by heating...Ch. 13 - Prob. 13.120QPCh. 13 - A study of the gas-phase oxidation of nitrogen...Ch. 13 - The reaction of water with CH3Cl in acetone as a...Ch. 13 - The reaction of thioacelamidc with water is shown...Ch. 13 - Prob. 13.124QPCh. 13 - Prob. 13.125QPCh. 13 - Prob. 13.126QPCh. 13 - Prob. 13.127QPCh. 13 - Prob. 13.128QPCh. 13 - Prob. 13.129QPCh. 13 - Prob. 13.130QPCh. 13 - The rate constant for a certain reaction is 1.4 ...Ch. 13 - The decomposition of hydrogen peroxide is a first...Ch. 13 - Prob. 13.133QPCh. 13 - What is the rate law for the following gas-phase...Ch. 13 - A possible mechanism for a gas-phase reaction is...Ch. 13 - Say you run the following elementary, termolecular...Ch. 13 - Prob. 13.137QPCh. 13 - For the decomposition of one mole of nitrosyl...Ch. 13 - Given the following mechanism for a chemical...Ch. 13 - The following data were collected for the reaction...Ch. 13 - A hypothetical reaction has the two-step mechanism...Ch. 13 - Prob. 13.142QPCh. 13 - Prob. 13.143QPCh. 13 - Prob. 13.144QPCh. 13 - Dinitrogen pentoxide decomposes according to the...Ch. 13 - Prob. 13.146QPCh. 13 - Dinitrogen pentoxide, N2O5, undergoes first-order...Ch. 13 - Prob. 13.148QPCh. 13 - Hydrogen peroxide in aqueous solution decomposes...Ch. 13 - Nitrogen dioxide reacts with carbon monoxide by...Ch. 13 - Nitrogen monoxide reacts with oxygen to give...Ch. 13 - Nitrogen monoxide reacts with hydrogen as follows:...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY