Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 13.193RP
To determine
The maximum and minimum values of normal force exerted by track on the car.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A section of track for a roller coaster consists of two circular arcs ABC and CD joined by a straight portion BC. The radius of AB is 27 m and the radius of CD is 72 m. The car and its occupants, of total mass 250 kg, reach point A with practically no velocity and then drop freely along the track. Determine the normal force exerted by the track on the car as the car reaches point B . Ignore air resistance and rolling resistance.
A section of track for a roller coaster consists of two circular arcs AB and CD joined by a straight portion BC. The radius of AB is 27 m
and the radius of CD is 72 m. The car and its occupants, of total mass 263 kg, reach point A with practically no velocity and then drop
freely along the track. Determine the maximum and minimum values of the normal force exerted by the track on the car as the car
travels from A to D. Ignore air resistance and rolling resistance.
27 m
18 m
r=72m
The minimum normal force exerted by the track is
The maximum normal force exerted by the track is [
6955 N.
6955 N
The 50-kg package at Point A is rolling on a smooth ramp, where the ramp has two circular
arcs AB and CD. Section BC is a straight path, and the radius of CD is r = 25 m. The heights
of the ramp at g and b are given as a = 15 m and b = 30 m. At point 4, the package is initially
at rest and then rolls freely along the ramp until it reaches point D and lands onto a cart. The
air resistance and rolling resistance are ignored.
a. Determine the datum line and draw Free Body Diagram (FBD) at point B, C, and D.
b. Using the principle of conservation of energy, determine the normal component of
acceleration at point B.
c. Determine the normal force exerted by the ramp on the package at point B.
Chapter 13 Solutions
Vector Mechanics For Engineers
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - Prob. 13.2PCh. 13.1 - Prob. 13.3PCh. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - Prob. 13.6PCh. 13.1 - Prob. 13.7PCh. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - An athlete is holding 30 lb of weights at a height...
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - A package is thrown down an incline at A with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - A trailer truck enters a 2 percent uphill grade...Ch. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - The subway train shown is travelling at a speed of...Ch. 13.1 - Prob. 13.19PCh. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - The motor applies a constant downward force F=1050...Ch. 13.1 - The motor applies a constant downward force F to...Ch. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg....Ch. 13.1 - Four 15-kg packages are placed as shown on a...Ch. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26. assuming that the 2-kg block is...Ch. 13.1 - People with mobility impairments can gain great...Ch. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - A 0.75-lb brass (nonmagnetic) block A and a 0.5-lb...Ch. 13.1 - An uncontrolled automobile travelling at 65 mph...Ch. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Nonlinear springs are classified as hard or soft,...Ch. 13.1 - A meteor starts from rest at a very great distance...Ch. 13.1 - Express the acceleration of gravity gh, at an...Ch. 13.1 - Prob. 13.38PCh. 13.1 - The sphere at A is given a downward velocity v0 of...Ch. 13.1 - The sphere at Ais given a downward velocity v0and...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42. determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - A small block slides at a speed v=8 ft/s on a...Ch. 13.1 - A chairlift is designed to transport 1000 skiers...Ch. 13.1 - Prob. 13.47PCh. 13.1 - The velocity of the lift of Prob. 13.47 increases...Ch. 13.1 - (a) A 120-lb woman rides a 15-lb bicycle up a...Ch. 13.1 - Prob. 13.50PCh. 13.1 - Prob. 13.51PCh. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - A small blocks is released from rest and slides...Ch. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - A 2-lb collar C may slide without friction along a...Ch. 13.2 - Solve Prob. 13.58 assuming the spring CD has been...Ch. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28....Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - Prob. 13.63PCh. 13.2 - Prob. 13.64PCh. 13.2 - Prob. 13.65PCh. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Solve Prob. 13.68 assuming the coefficient of...Ch. 13.2 - Prob. 13.70PCh. 13.2 - A roller coaster starts from rest at A, rolls down...Ch. 13.2 - Prob. 13.72PCh. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - An 8-oz package is projected upward with a...Ch. 13.2 - If the package of Prob. 13.74 is not to hit the...Ch. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - Prob. 13.78PCh. 13.2 - Prob. 13.79PCh. 13.2 - Prob. 13.80PCh. 13.2 - A force F acts on a particle P(x, y) which moves...Ch. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - (a) Determine the kinetic energy per unit mass...Ch. 13.2 - Prob. 13.86PCh. 13.2 - Prob. 13.87PCh. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - Prob. 13.92PCh. 13.2 - Prob. 13.93PCh. 13.2 - Prob. 13.94PCh. 13.2 - Prob. 13.95PCh. 13.2 - Prob. 13.96PCh. 13.2 - Prob. 13.97PCh. 13.2 - Prob. 13.98PCh. 13.2 - Prob. 13.99PCh. 13.2 - Prob. 13.100PCh. 13.2 - Prob. 13.101PCh. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - Prob. 13.110PCh. 13.2 - Prob. 13.111PCh. 13.2 - Prob. 13.112PCh. 13.2 - Prob. 13.113PCh. 13.2 - Prob. 13.114PCh. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass mdescribes a circular orbit...Ch. 13.2 - Prob. 13.117PCh. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - The initial velocity of the block in position A is...Ch. 13.3 - Prob. 13.F2PCh. 13.3 - Prob. 13.F3PCh. 13.3 - Car A was traveling west at a speed of 15 m/s and...Ch. 13.3 - Prob. 13.F5PCh. 13.3 - A 35.000-Mg ocean liner has an initial velocity of...Ch. 13.3 - Prob. 13.120PCh. 13.3 - A sailboat weighing 980 lb with its occupants is...Ch. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Baggage on the floor of the baggage car of a...Ch. 13.3 - Prob. 13.126PCh. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - Prob. 13.131PCh. 13.3 - The motor applies a constant downward force F=550...Ch. 13.3 - Prob. 13.133PCh. 13.3 - Prob. 13.134PCh. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - A 1.6 2-oz golf ball is hit with a golf club and...Ch. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - Prob. 13.142PCh. 13.3 - Prob. 13.143PCh. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - A 120-ton tugboat is moving at 6 ft/s with a slack...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Prob. 13.149PCh. 13.3 - Prob. 13.150PCh. 13.3 - Prob. 13.151PCh. 13.3 - Prob. 13.152PCh. 13.3 - Prob. 13.153PCh. 13.3 - In order to test the resistance of a chain to...Ch. 13.4 - A 5 -kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - F6 A sphere with a speed v0 rebounds after...Ch. 13.4 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 13.4 - Prob. 13.F8PCh. 13.4 - Prob. 13.F9PCh. 13.4 - Block A of mass mA strikes ball B of mass mB with...Ch. 13.4 - Two steel blocks slide without friction on a...Ch. 13.4 - Prob. 13.156PCh. 13.4 - One of the requirements for tennis balls to be...Ch. 13.4 - Prob. 13.158PCh. 13.4 - Prob. 13.159PCh. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Prob. 13.161PCh. 13.4 - Prob. 13.162PCh. 13.4 - Prob. 13.163PCh. 13.4 - Two identical billiard balls can move freely on a...Ch. 13.4 - Two identical 40-lb curling stones have diameters...Ch. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - The Mars Pathfinder spacecraft used large airbags...Ch. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Rockfalls can cause major damage to roads and...Ch. 13.4 - Prob. 13.173PCh. 13.4 - cars of the same mass run head-on into each other...Ch. 13.4 - Prob. 13.175PCh. 13.4 - Prob. 13.176PCh. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Blocks A and B each weigh 0.8 lb and block C...Ch. 13.4 - A 5-kg sphere is dropped from a height of y=2 m to...Ch. 13.4 - Prob. 13.180PCh. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Prob. 13.185PCh. 13.4 - Prob. 13.186PCh. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of a=30 , the 1-Ib...Ch. 13.4 - Prob. 13.189PCh. 13 - 34,000-Ib airplane lands on an aircraft carrier...Ch. 13 - Prob. 13.191RPCh. 13 - A satellite describes an elliptic orbit about a...Ch. 13 - Prob. 13.193RPCh. 13 - Prob. 13.194RPCh. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - Prob. 13.197RPCh. 13 - Prob. 13.198RPCh. 13 - Prob. 13.199RPCh. 13 - Prob. 13.200RPCh. 13 - The 2-Ib ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cart has a mass of 1.5 kg. It is given some initial push toward a sensor and is slowed by a hanging mass which makes the cart turn around and speed up as it returns to its original position. This situation is illustrated in the attached image. If the acceleration towards the sensor is 0.5 m/s2 and the accaleration away from the sensor is 0.15 m/s2, a. draw the free body diagrams for the cart moving towards the sensor and away from the sensor. b. Write Newton's law for both situations and solve for the frictional force and for the force from the hanging mass.arrow_forward3. A box of mass m=15 kg at the packaging section of a factory comes to the top of a (0=37°) with speed vo and slides down where it is picked up for shipment. In order to avoid damage to the box a spring is used with force constant k=100N/m and the ramp maximum force Fmax=100N. The box slides a distance of -4 m down the incline before it hits the spring is 0.75. ramp as shown. The coefficient of kinetic friction between the box and entire a) Find the work done by the normal force and Vo gravity friction force on the box until it hits the spring. b) Find the maximum speed of the box at the top of the ramp if the box is to be picked up in the spring is www when maximum compression.arrow_forwardPlease help with the attached problem.arrow_forward
- Parvinbhaiarrow_forward1) A cable is attached to a 0.5 kg block that slides over the smooth rigid horizontal rod AB. The diagram shown depicts the vertical plane. The cable tension is constant value T. At point C the speed of the block is 6 m/s to the left and at point D the speed is 1 m/s to the left. Determine the value of T. Note: take gravitational acceleration g=9,806 3 m D C A 4 m-arrow_forward3. Jet engines on the 100 Mg VTOL aircraft exert a constant vertical force of 981 kN as it hovers. Determine the net impulse on the aircraft over t = 10 s. a. -981 kN-s b. 0 kN's c. 981 kN's d. 9810 kN-s ↑ F = 981 KNarrow_forward
- 3. A 100 lb. wooden crate is pushed across a stone floor with a horizontal force of 45 lbs. How long will it take for the crate starting from the rest to travel 200 ft. Assume μ between the crate and the floor to be 0.4.arrow_forward3. A 5-kg crate is released from rest at Point A of a 20-kg ramp which is inclined at 40 degrees as shown in the figure below. The lengths of the ramp is 2 m. The interface between the ramp and the ground can be assumed to be frictionless. Use Newton's 2nd Law and the definition of the center of mass to determine the horizontal distance that the ramp has moved when the crate reaches Point B. Neglect the size of the crate. Does your answer depend on the frictional force between the crate and the ramp? e Sarrow_forward3. A merry-go-round with radius R rotates in a horizontal plane at constant angular speed o. A boy with mass M at the edge begins to walk in a straight line relative to the merry-go-round from A to B with speed vo relative to the merry-go-round. Determine the magnitude of the force acting on the boy in terms of the quantities given.arrow_forward
- 5. If a ball of weight W is dropped from a height h above the ground (datum), show that the total mechanical energy of the ball in its initial position equals the total mechanical energy of the ball just before it strikes the ground AND also equals the total mechanical energy of the ball when it has fallen h/2. h Datum h 2 Potential Energy (max) Kinetic Energy (zero) Potential Energy and Kinetic Energy Potential Energy (zero) Kinetic Energy (max)arrow_forwardPr4. Two bodies are launched at the same time from two points A and B located at the same height. The distance between points A and B is d. One of the bodies starts from point A upwards with speed v1, while the other starts from point B towards point A with initial speed v2. What will be the minimal distance between the bodies during their motion? (The gravitational acceleration is g, neglect the air drag. The bodies do not reach the ground before the moment of the minimal distance.)arrow_forwardWrite all the steps with free body diagrams as well please and thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY