
Concept explainers
(a)
Interpretation:
The
Concept introduction:
Henry’s law gives the quantitative relationship between the pressure of the gas and its solubility. It states that the amount of gas dissolved in a liquid is proportional to the partial pressure of the gas. Higher the partial pressure of the gas, more will be its solubility and vice-versa.
The formula to calculate the solubility of gases according to Henry’s law is as follows:
Here,
The formula to calculate the density of the substance is as follows:
(a)

Answer to Problem 13.161P
Explanation of Solution
Rearrange equation (2) to calculate the mass of the substance as follows:
Substitute
The formula to calculate the moles of
Substitute
The formula to calculate the mole fraction of
Rearrange equation (5) to calculate the moles of
The number of moles of
Substitute
Since the volume of the solution is considered as
Rearrange equation (1) to calculate
Substitute
The value of
(b)
Interpretation:
The solubility of
Concept introduction:
Henry’s law gives the quantitative relationship between the pressure of the gas and its solubility. It states that the amount of gas dissolved in a liquid is proportional to the partial pressure of the gas. Higher the partial pressure of the gas, more will be its solubility and vice-versa.
The formula to calculate the solubility of gases according to Henry’s law is as follows:
Here,
The
The formula to calculate the concentration of an ion in
(b)

Answer to Problem 13.161P
Explanation of Solution
The value of
The formula to calculate the pressure of
Substitute
Substitute
The mass of
Consider the mass of the solution to be
Substitute
The solubility of gas depends on the partial pressure of the gas. Higher partial pressure means more solubility and vice-versa.
(c)
Interpretation:
The decreasing order of
Concept introduction:
Henry’s law gives the quantitative relationship between the pressure of the gas and its solubility. It states that the amount of gas dissolved in a liquid is proportional to the partial pressure of the gas. Higher the partial pressure of the gas, more will be its solubility and vice-versa.
The formula to calculate the solubility of gases according to Henry’s law is as follows:
Here,
(c)

Answer to Problem 13.161P
The decreasing order of
Explanation of Solution
The value of
So the decreasing order of
The value of
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: The Molecular Nature of Matter and Change
- For questions 1-4, consider the following complexes: [Co(CN)6], [COC14]², [Cr(H2O)6]²+ 4. Room temperature (20°C) measurement of molar magnetic susceptibility (Xm) for Fe(NH4)2(SO4)2×6H2O is 1.1888 x 102 cgs (Gaussian units). Calculate effective magnetic moment and provide a number of unpaired electrons for the iron ion. Use this number to rationalize the coordination geometry around iron center. (4 points)arrow_forward7. Describe the expected 31P and 19F (where applicable) NMR spectral patterns for the following compounds (indicate number of signals and their splitting patterns). a) tetraphenyldiphosphine Ph Ph P-P Ph Ph Ph Ph ' b) tetraphenyldiphosphine monoxide P-P-Ph Ph (2 points) (2 points c) tetrafluorophosphonium hexafluorophosphate [PF4]*[PF6]¯ (4 points)arrow_forward3. For questions 1-4, consider the following complexes: [Co(CN)6]4, [COC14]², [Cr(H2O)6]²+ Which (if any) of these complexes would be expected to display Jahn-Teller distortion? (2 points)arrow_forward
- What is Instrumental Neutron Activation and what are the advantages and disadvantages in using its applications? (I'm doing an in class assignment and need better understanding of what the instrument can be used for) Please include references so that I can better understand the application of how the instrument works!arrow_forwardWhat is Isotope Analysis and what are the advantages and disadvantages in using its applications and instrumentalization? Please include references so that I can better understand how the instrument works!arrow_forward5. Count the electrons on the following complexes and state whether they follow the 18- electron rule: (3 points) Fe(CO)5 Ni(PMe3)4 PMe3 is trimethylphosphine Mn(CO)5Brarrow_forward
- For questions 1-4, consider the following complexes: [Co(CN)6]+, [CoCl4]², [Cr(H2O)6]²+ 2. Draw the corresponding d-orbital splitting for each of the complexes; predict the spin- state (low-spin/high spin) for each of the complexes (if applicable); explain your arguments. Calculate the crystal field stabilization energy for each complex (in Ao or At). (6 points)arrow_forwardFor questions 1-4, consider the following complexes: [Co(CN)6]4, [COC14]², [Cr(H2O)6]²+ 1. Assign oxidation number to the metal, then indicate d-electron count. (3 points)arrow_forwardUsing iodometry I want to titrate a sodium thiosulfate solution and I use 15 mL. If I have 50 mL of a 0.90 M copper solution and KI, what will be the molarity of sodium thiosulfate?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





