![Loose Leaf for Chemistry: The Molecular Nature of Matter and Change](https://www.bartleby.com/isbn_cover_images/9781260151749/9781260151749_largeCoverImage.gif)
(a)
Interpretation:
The total molarity of ions for each solution is to be calculated.
Concept introduction:
Molarity is defined as the number of moles of solute that are dissolved in one litre of solution. It is represented by
The formula to calculate the molarity of the solution is as follows:
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.119P
The total molarity of ions of solutions A, B and C are
Explanation of Solution
The formula to calculate the total molarity of ions of the solution is as follows:
Solution A has a total of 8 spheres.
Substitute 8 spheres for the number of spheres and
Solution B has a total of 10 spheres.
Substitute 10 spheres for the number of spheres and
Solution C has a total of 12 spheres.
Substitute 12 spheres for the number of spheres and
The total molarity of ions of solutions A, B and C are
(b)
Interpretation:
The highest molarity of the solute is to be determined.
Concept introduction:
Molarity is defined as the number of moles of solute that are dissolved in one litre of solution. It is represented by
The formula to calculate the molarity of the solution is as follows:
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.119P
Solution A has the highest molarity.
Explanation of Solution
The formula to calculate the molarity of the compound is as follows:
Solution A has a total of 8 spheres and the moles of dissociated ions are two (one positive and one negative charge).
Substitute 8 spheres for the number of spheres,
Solution B has a total of 10 spheres and the moles of dissociated ions are two (one positive and one negative charge).
Substitute 10 spheres for the number of spheres,
Solution C has a total of 12 spheres and the moles of dissociated ions are three (two positive and one negative charge).
Substitute 12 spheres for the number of spheres,
Solution A has the highest molarity.
Solution A has the highest molarity.
(c)
Interpretation:
The lowest molality of solute is to be calculated.
Concept introduction:
Molality is the measure of the concentration of solute in the solution. It is the amount of solute that is dissolved in one kilogram of the solvent. It is represented by
The formula to calculate the molality of the solution is as follows:
The density of the substance is defined as the mass per unit volume. It is represented by
The formula to calculate the density of the solution is as follows:
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.119P
Solution C has the lowest molality.
Explanation of Solution
Rearrange equation (5) to calculate the mass of the substance as follows:
Consider the equal densities of all the three solutions to be
Substitute
Substitute
Substitute
The formula to calculate the molality of the compound is as follows:
Solution A has a total of 8 spheres and the moles of dissociated ions are two (one positive and one negative charge).
Substitute 8 spheres for the number of spheres,
Solution B has a total of 10 spheres and the moles of dissociated ions are two (one positive and one negative charge).
Substitute 10 spheres for the number of spheres,
Solution C has a total of 12 spheres and the moles of dissociated ions are three (two positive and one negative charge).
Substitute 12 spheres for the number of spheres,
Solution C has the lowest molality.
Solution C has the lowest molality.
(d)
Interpretation:
The highest osmotic pressure is to be calculated.
Concept introduction:
The osmotic pressure is defined as the measure of the tendency of a solution to take in pure solvent via osmosis. It is defined as the minimum pressure that is to be applied to the solution to prevent the inward flow of the pure solvent across the semipermeable membrane. Osmosis occurs when two solutions have different concentrations of solute and are separated by a semipermeable membrane.
The formula to calculate the osmotic pressure of the solution is as follows:
Here,
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 13.119P
Solution A has the highest osmotic pressure.
Explanation of Solution
Consider the temperature to be
Solution A breaks into two ions so its van’t Hoff factor is 2.
Substitute 2 for
Solution B breaks into two ions so its van’t Hoff factor is 2.
Substitute 2 for
Solution C breaks into three ions so its van’t Hoff factor is 3.
Substitute 3 for
Solution A has the highest osmotic pressure.
Solution A has the highest osmotic pressure.
Want to see more full solutions like this?
Chapter 13 Solutions
Loose Leaf for Chemistry: The Molecular Nature of Matter and Change
- Please do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forwardPlease answer the question and provide detailed explanations.arrow_forwardAll of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward
- 5. Fill in the missing molecules in the following reaction pathway. TMSO Heat + CI then HF O₂N (1.0 equiv) AICI 3 OMearrow_forwarde. O₂N NO2 1. excess H2, Pd/C 2. excess NaNO2, HCI 3. excess CuCNarrow_forwardHelp with a periodic table task.' Procedure Part 1: Customizing a Periodic Table Use a textbook or other valid source to determine which elements are metals, nonmetals, metalloids (called semimetals in some texts), alkali metals, alkaline earth metals, transition metals, halogens, and noble gases. Download and print a copy of the Periodic Table of Elements. Use colored pencils, colorful highlighters, or computer drawing tools to devise a schematic for designating each of the following on the periodic table: Group numbers Period number Labels for these groups: alkali metals, alkaline earth metals, transition metals, inner transition metals (lanthanides and actinides), other metals, metalloids (semimetals), other nonmetals, halogens, and noble gases Metals, nonmetals, and metalloids Note: Write the group and period numbers and color/highlight each element for categorization. Be sure to include a key for the schematic. Take a photo of the completed periodic table and upload the…arrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardCan you explain these two problems for mearrow_forward个 ^ Blackboard x Organic Chemistry II Lecture (m x Aktiv Learning App x → C app.aktiv.com ← Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 28 of 35 :OH H HH KO Select to Edit Arrows CH CH₂OK, CH CH2OH 5+ H :0: Donearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)