Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 12OQ
(a)
To determine
Check whether the speed of wave on a string can be greater the speed
(b)
To determine
Check whether the speed of wave on a string can be very much greater the speed
(c)
To determine
Check whether
(d)
To determine
Check whether
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A guitar string is 90.0 cm long and has a mass of 3.16 g. From the bridge to the support post there is 60.0 cm and the rope is under a tension of 520 N. Determine:
a) The linear density of the string and the speed of the waveb) The wavelength of the first harmonicc) The frequency of the first harmonic
A taut rope is tied to a machine that causes it to
oscillate sinusoidally. You take a picture of the
rope and see that at that moment there are four
complete cycles along 10m. If the oscillator
frequency is 20HZ, find:
a) The wave number
b) The angular frequency
c) If at time t = Os, the height of the wave is Om
when x = 0m, find the phase shift of the
oscillation.
d) If at time t = Os, the transverse velocity is 250m
/ s when x = Om, find the amplitude of the
oscillation.
e) Write the wave function that describes the
behavior of this wave.
A progressive sine wave in the positive direction of x has an amplitude of 25.0 cm, a wavelength of 50.0 cm and a frequency of 8.00 Hz. Determine (a) the speed of the wave on the string and (b) the angular number of the wave.
Chapter 13 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 13.1 - (i) In a long line of people waiting to buy...Ch. 13.2 - Prob. 13.2QQCh. 13.2 - The amplitude of a wave is doubled, with no other...Ch. 13.3 - Suppose you create a pulse by moving the free end...Ch. 13.5 - Prob. 13.5QQCh. 13.7 - Consider detectors of water waves at three...Ch. 13.7 - Prob. 13.7QQCh. 13 - Prob. 1OQCh. 13 - Prob. 2OQCh. 13 - Rank the waves represented by the following...
Ch. 13 - Prob. 4OQCh. 13 - When all the strings on a guitar (Fig. OQ13.5) are...Ch. 13 - By what factor would you have to multiply the...Ch. 13 - A sound wave can be characterized as (a) a...Ch. 13 - Prob. 8OQCh. 13 - Prob. 9OQCh. 13 - A source vibrating at constant frequency generates...Ch. 13 - A source of sound vibrates with constant...Ch. 13 - Prob. 12OQCh. 13 - Prob. 13OQCh. 13 - Prob. 14OQCh. 13 - As you travel down the highway in your car, an...Ch. 13 - Prob. 16OQCh. 13 - Suppose an observer and a source of sound are both...Ch. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - When a pulse travels on a taut string, does it...Ch. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - How can an object move with respect to an observer...Ch. 13 - Prob. 13CQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - The string shown in Figure P13.5 is driven at a...Ch. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - A transverse wave on a string is described by the...Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - A transverse sinusoidal wave on a string has a...Ch. 13 - A steel wire of length 30.0 m and a copper wire of...Ch. 13 - Prob. 16PCh. 13 - Prob. 17PCh. 13 - Review. A light string with a mass per unit length...Ch. 13 - Prob. 19PCh. 13 - Prob. 20PCh. 13 - A series of pulses, each of amplitude 0.150 m, are...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - A taut rope has a mass of 0.180 kg and a length of...Ch. 13 - Prob. 25PCh. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 30PCh. 13 - Write an expression that describes the pressure...Ch. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - A sound wave in air has a pressure amplitude equal...Ch. 13 - A rescue plane flies horizontally at a constant...Ch. 13 - A driver travels northbound on a highway at a...Ch. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Review. A tuning fork vibrating at 512 Hz falls...Ch. 13 - Submarine A travels horizontally at 11.0 m/s...Ch. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Review. A block of mass M, supported by a string,...Ch. 13 - Prob. 51PCh. 13 - Review. A block of mass M hangs from a rubber...Ch. 13 - Prob. 53PCh. 13 - The wave is a particular type of pulse that can...Ch. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 63PCh. 13 - Prob. 64PCh. 13 - Prob. 65PCh. 13 - Prob. 66PCh. 13 - Prob. 67PCh. 13 - A sound wave moves down a cylinder as in Active...Ch. 13 - A string on a musical instrument is held under...Ch. 13 - A train whistle (f = 400 Hz) sounds higher or...Ch. 13 - The Doppler equation presented in the text is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Can you solve it plz and explain it pleasearrow_forwardA wave produced by the superposition of two harmonic waves is described by the equation y(x,t) = 5 cos(2 x - 2 t) sin(3 x - 8 t) where all quantities are in SI units. a) What is the phase velocity of the wave Number b) What is the group velocity of the wave Number c) Does the wave display normal or anomalous dispersion? O normal O anomalousarrow_forwardA harmonic save with amplitude of 1.20mm, frequency 25Hz and wave speed v=154m/s is traveling in the +x-direction d) Plot the transverse velocity Vy (x;t) for a complete cycle of the point on a stringarrow_forward
- Consider a wave on a string moving to the right, as shown in Fig. 11-50. What is the direction of the velocity of a particle of string at point B? Wave velocity (a) A B (b) (c) ▼ FIGURE 11-50 (d). MisConceptual Question 12. (e) v = 0, so no direction.arrow_forwardA)Why does the speed of a wave change when the amplitude remains the same but the frequency changes? B)Why does the wavelength change when the amplitude remains the same but the frequency changes?arrow_forwardA wire is under tension due to hanging mass. The observed wave speed is 24 m/s when the suspended mass is 3kg. a) what is the string's linear density ? b) if the length of the vibrating portion of the string is 1.2m, what is the frequency?arrow_forward
- (A) An end of a combined string has a linear mass density of 8.00 kg/m, whereas the secondstring has a density of 3.55 kg/m.. If a vibration with a frequency of 15 vibrations is impartedto the first stringand and the tension in the string is 550 N, find the frequency, velocity, andwavelength of (a) the incident wave, (b) the reflected wave, and (c) the transmitted wave.arrow_forwardA wave traveling on a string hes the following wave function , y(u, ) = A sin (kutwt +q At time X=0 has and is mouing in the negative yu diretion the the point x dis placement of %3D what is the phase constant and wave speed direction?arrow_forwardP 18-28 page-559 Refer to the figure below where the attached mass m hangs from a cord around a pulley, with m= 5.00 kg. The length of the cord between point P and the pulley is L = 2.00 m. The vibrator is set to a frequency of 150 Hz and a standing wave of six loops is formed, as shown in the figure above. (a) Determine the linear mass density of the string. (b) How many loops (if any) will result if the mass m is changed to 45 kg? (c) How many loops (if any) will result if the mass m is changed to 10 kg?arrow_forward
- 20 rad/s In an oscillatory motion of a simple pendulum, the ratio of the maximum angular acceleration, e"max, to the maximum angular velocity, O'max, is rt s^(-1). What is the time needed for the pendulum to complete one-half oscillation? 1 sec 2 sec 0.25 sec 4 sec 0.5 sec A traveling wave on a taut string with a tension force T, is given by the wave function: y(x.t) = 0.05sin(Ttx-100Tt), where x and y are in meters and t is in seconds. If the linear mass density of the string is given by u = 0.01 kg/m, then %3Darrow_forwardA student attaches one end of a Slinky to the top of a table.She holds the other end in her hand, stretches it to a length ,and then moves it back and forth to send a wave down theSlinky. If she next moves her hand faster while keeping thelength of the Slinky the same, how does the wavelengthdown the Slinky change?(a) It increases.(b) It stays the same.(c) It decreases.arrow_forward(d)v = 2ghmax A wave traveling on a string has the following wave function, y(x, t) = Asin(kx + wt + p). At time t = 0, the point x 0 has a displacement of y(0,0) = 0, and is moving in the negative y -direction. Which of the following is true about the phase constant and the wave speed direction? (a) o = "/2, and the wave is moving in the negative x-direction. (b)y = "2, and the wave is moving in the positive x-direction. (c) o = n and the wave is moving in the negative x-direction. (d)g = n and the wave is moving in the positive x-direction. 11) %3D %3D %3D %3D Y (90) = Aswyz) =0 or %3D Ao las(4)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY