Concept explainers
A transverse sinusoidal wave on a string has a period T = 25.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, an element of the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 2.00 m/s. (a) What is the amplitude of the wave? (b) What is the initial phase angle? (c) What is the maximum transverse speed of an element of the string? (d) Write the wave function for the wave.
(a)
The amplitude of the wave.
Answer to Problem 14P
The amplitude of the wave is
Explanation of Solution
Write the expression for the general wave function.
Here,
Differentiate Equation (I) with respect to time to calculate the velocity.
Here,
Write the relation between the time period for the wave function.
Here,
Consider the trigonometric identity as below.
Conclusion:
Substitute
Substitute Equation (I) in Equation (II) for
Substitute
Substitute
Re-write the Equation (IV) by multiplying with common factors in numerator and denominators.
Substitute Equation (V) for
Substitute
Thus, the amplitude of the wave is
(b)
The initial phase angle of the wave.
Answer to Problem 14P
The initial phase angle of the wave is
Explanation of Solution
Obtain the expression to calculate the initial phase angle using Equations (V) and (VII).
Re-write the expression to determine the phase angle.
Conclusion:
Substitute
Since, the obtain value of tangent is negative, phase angle must lie in second or fourth quadrant. The value of sine is positive and the value of cosine is negative for the given wave function. This condition is possible only in second quadrant.
Then, calculate the phase angle in second quadrant.
Thus, the initial phase angle of the wave is
(c)
The maximum speed of the transverse speed spring element.
Answer to Problem 14P
The maximum speed of the transverse speed spring element is
Explanation of Solution
Write the expression to calculate the maximum transverse speed from equation (VII).
Here, the maximum transverse speed of spring element is
Conclusion:
Substitute
Thus, the maximum speed of the transverse speed spring element is
(d)
The wave function for the wave.
Answer to Problem 14P
The wave function for the wave is
Explanation of Solution
Write the expression for the speed of propagation of the wave in x direction.
Here,
Write the expression to calculate the wave number.
Conclusion:
Substitute
Substitute
Substitute
Thus, the wave function for the wave is
Want to see more full solutions like this?
Chapter 13 Solutions
Principles of Physics: A Calculus-Based Text
- Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardA taut rope has a mass of 0.180 kg and a length of 3.60 m. What power must be supplied to the rope so as to generate sinusoidal waves having an amplitude of 0.100 m and a wavelength of 0.500 m and traveling with a speed of 30.0 m/s?arrow_forwardBy what factor would you have to multiply the tension in a stretched string so as to double the wave speed? Assume the string does not stretch. (a) a factor of 8 (b) a factor of 4 (c) a factor of 2 (d) a factor of 0.5 (e) You could not change the speed by a predictable factor by changing the tension.arrow_forward
- The equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardA transverse wave on a string is described by the wave function y=0.120sin(8x+4t) where x and y are in meters and t is in seconds. Determine (a) the transverse speed and (b) the transverse acceleration at t = 0.200 s for an element of the string located at x = 1.60 m. What are (c) the wavelength, (d) the period, and (e) the speed of propagation of this wave?arrow_forwardA string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forward
- A standing wave on a string is described by the equation y(x, t) = 1.25 sin(0.0350x) cos(1450t), where x is in centimeters, t is in seconds, and the resulting amplitude is in millimeters. a. What is the length of the string if this standing wave represents the first harmonic vibration of the string? b. What is the speed of the wave on this string?arrow_forwardA steel wire of length 30.0 m and a copper wire of length 20.0 m, both with 1.00-mm diameters, are connected end to end and stretched to a tension of 150 N. During what time interval will a transverse wave travel the entire length of the two wires?arrow_forwardThe wave function for a pulse on a rope is given by y(x,t)=0.43(x13.6t)2+1 where all constants are in the appropriate SI units. Sketch the wave profile for a. the incident pulse, b. the reflected pulse if the end is free, and c. the reflected pulse if the end is fixed.arrow_forward
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardWhen a standing wave is set up on a string fixed at both ends, which of the following statements is true? (a) The number of nodes is equal to the number of antinodes. (b) The wavelength is equal to the length of the string divided by an integer. (c) The frequency is equal to the number of nodes times the fundamental frequency. (d) The shape of the string at any instant shows a symmetry about the midpoint of the string.arrow_forwardAs in Figure P18.16, a simple harmonic oscillator is attached to a rope of linear mass density 5.4 102 kg/m, creating a standing transverse wave. There is a 3.6-kg block hanging from the other end of the rope over a pulley. The oscillator has an angular frequency of 43.2 rad/s and an amplitude of 24.6 cm. a. What is the distance between adjacent nodes? b. If the angular frequency of the oscillator doubles, what happens to the distance between adjacent nodes? c. If the mass of the block is doubled instead, what happens to the distance between adjacent nodes? d. If the amplitude of the oscillator is doubled, what happens to the distance between adjacent nodes? FIGURE P18.16arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning