
Concept explainers
(a)
The maximum linear speed of the heart wall.
(a)

Answer to Problem 40P
The maximum linear speed of the heart wall is
Explanation of Solution
Write the expression for the maximum speed.
Here,
Write the expression for the angular velocity.
Here,
Conclusion:
Substitute
Substitute
Therefore, the maximum linear speed of the heart wall is
(b)
The maximum change in frequency between the sound that arrives at the wall of the baby’s heart and the sound emitted by the source.
(b)

Answer to Problem 40P
The maximum change in frequency between the sound that arrives at the wall of the baby’s heart and the sound emitted by the source is
Explanation of Solution
The frequency of the wave when the heart approaches the source at maximum velocity is given by,
Here,
The maximum change in frequency is,
Use equation (III) in (IV),
Conclusion:
Substitute
Therefore, The maximum change in frequency between the sound that arrives at the wall of the baby’s heart and the sound emitted by the source is
(c)
The maximum change in frequency between the reflected sound received by the detector and that emitted by the source.
(c)

Answer to Problem 40P
The maximum change in frequency between the reflected sound received by the detector and that emitted by the source is
Explanation of Solution
The frequency of the wave when the heart approaches the source at maximum velocity is,
Use equation (VI) for the change in frequency when the heart wall is a moving source.
Here,
Use equation (III) in equation (VII),
Solve equation (VIII) for
Conclusion:
The velocity of the source and the observer in expression (IX) refers to the movement of the heart wall, and the velocity of the sound wave is much greater than those velocities,
Substitute
Therefore, the maximum change in frequency between the reflected sound received by the detector and that emitted by the source is
Want to see more full solutions like this?
Chapter 13 Solutions
Principles of Physics: A Calculus-Based Text
- Please solve this problem correctly please and be sure to provide explanation on each step so I can understand what's been done thank you. (preferrably type out everything)arrow_forwardUse a calculation to determine how far the fishing boat is from the water level .Determine distance Yarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- 2. 1. Tube Rating Charts Name: Directions: For the given information state if the technique is safe or unsafe and why. 60 Hertz Stator Operation Effective Focal Spot Size- 0.6 mm Peak Kilovolts MA 2 150 140 130 120 110 100 90 80 70 2501 60 50 40 30 .01 .02 .04.06 .1 .2 .4.6 1 8 10 Maximum Exposure Time In Seconds Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above? Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above?arrow_forwardQ: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-arrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





