(a)
To determine: The equilibrium constant for the reaction for formation of glucose 6-phosphate at 37°C and whether this reaction is a reasonable
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(a)
Explanation of Solution
The reaction for the formation of glucose-6-phosphate by reaction of inorganic phosphate and glucose is as follows:
The value of gas constant R is 0.0083 kJ/ mole K. The equilibrium constant at the given temperature 37°C (310 K) is calculated as follows-
The value of equilibrium constant of glucose-6-phosphate is determined as follows:
The given reaction will not be favorable based on the levels of glucose in a cell, as it will exceed the concentration of
(b)
To determine: Whether the route is physiologically reasonable when the maximum solubility of glucose is less than 1M.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(b)
Explanation of Solution
The value of equilibrium constant is also determined as follows:
This route will be unfavorable because the given concentration of glucose exceeds the permissible limit of 1M. The concentration of glucose at given conditions is 11 M and the reaction will not be physiologically feasible because the maximum limit is exceeded by given concentration of glucose.
(c1)
To determine: The
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(c1)
Explanation of Solution
The two given
The value of gas constant R is 0.0083 kJ/ mole K. The equilibrium constant at the given temperature 37°C (310 K) is calculated as follows-
The
(c2)
To determine: The concentration of glucose needed to achieve 250 mM intracellular concentration of glucose-6-phosphate when the concentrations of ATP and ADP are 3.3 mM and 1.32 mM.
Introduction:
The glycolysis is the process of series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A).
(c2)
Explanation of Solution
The value of equilibrium constant is determined as follows:
The concentration of glucose needed is
(c3)
To discuss: Whether this coupling process provides feasible route at least in principle for phosphorylation of glucose in the cell.
Introduction:
The glycolysis is the process of series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A).
(c3)
Explanation of Solution
This route will be favorable because the given concentration of glucose does not exceed the permissible limit of 1 M. The coupling process will be feasible for given route for phosphorylation of glucose in the cell.
(d)
To determine: Whether the route is reasonable given that the coupling requires a common intermediate, the route uses ATP hydrolysis to raise the intracellular concentration of Pi.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(d)
Explanation of Solution
The high levels of phosphates are needed for the precipitation of divalent cations of phosphate salts under normal physiological conditions, and thus, the condition will not be possible. Therefore, the given route is not reasonable for the requirement of common intermediate in coupling.
(e)
To determine: The advantages of route of transfer of phosphate group by ATP to glucose by enzyme glucokinase.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(e)
Explanation of Solution
This reaction of transfer of phosphate group to glucose by ATP is catalyzed by glucokinase. The phosphate group is transferred and the potential of ATP is used and generation of high levels of intermediate molecules is not required. The reaction is catalyzed by glucokinase and no intermediates are formed by utilization of potential of ATP.
Want to see more full solutions like this?
Chapter 13 Solutions
Loose-leaf Version for Lehninger Principles of Biochemistry 7E & SaplingPlus for Lehninger Principles of Biochemistry 7E (Six-Month Access)
- Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forward
- Biochemistry What is the importance of the glucose-alanine cycle?arrow_forwardBiochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forward
- Biochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forwardBiochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forwardBiochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forward
- Biochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forwardDraw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON