BIOCHEMISTRY (LL)
9th Edition
ISBN: 9781337805100
Author: Campbell
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 10RE
RECALL Give three examples of DNA palindromes.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At a pH equal to the isoelectric point (pl) of alanine, the net charge of alanine is zero. Two structures can be drawn that have a
net charge of zero, but the predominant form of alanine at its pl is zwitterionic.
CH3
H,N
CH3
**
H¸N-C
H
Zwitterionic
H
Uncharged
OH
Select statements that explain why alanine is predominantly zwitterionic at its pl.
pk of alanine's amino group is more than its pl.
pk of alanine's carboxyl group is more than its pl.
PK of alanine's carboxyl group is less than its pl.
pk of alanine's amino group is less than its pl.
Correct Answer
What fraction of alanine is in the completely uncharged form at its pl?
1 in 2.2 × 107
1 in 1.6 × 10²
1 in 4680
1 in 9460
How does a voltage-gated sodium channel work? Specifically, how and why does a change in voltage trigger their opening? Please be detailed
When sodium ions enter a neuron during depolarization, they trigger the opening of additional voltage-gated sodium channels nearby, creating a positive feedback loop where the influx of sodium ions further depolarizes the membrane, causing even more sodium channels to open and allowing more sodium ions to enter the cell, thus sustaining the depolarization process until the action potential peaks. But how and why exactly does the influx of sodium ions trigger more sodium channels to let in more sodium? Please explain
Chapter 13 Solutions
BIOCHEMISTRY (LL)
Ch. 13 - RECALL What advantages does fluorescent labeling...Ch. 13 - RECALL What methods are used to visualize...Ch. 13 - REFLECT AND APPLY When proteins are separated...Ch. 13 - RECALL How does the use of restriction...Ch. 13 - RECALL What is the importance of methylation in...Ch. 13 - RECALL Why do restriction endonucleases not...Ch. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - RECALL What do the following have in common? MOM;...Ch. 13 - RECALL Give three examples of DNA palindromes.
Ch. 13 - RECALL What are three differences between the...Ch. 13 - RECALL What are sticky ends? What is their...Ch. 13 - RECALL What would be an advantage of using HaeIII...Ch. 13 - RECALL Describe the cloning of DNA.Ch. 13 - RECALL What vectors can be used for cloning?Ch. 13 - RECALL Describe the method you would use to test...Ch. 13 - RECALL What is blue/white screening? What is the...Ch. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - REFLECT AND APPLY What are the requirements for an...Ch. 13 - Prob. 25RECh. 13 - Prob. 26RECh. 13 - REFLECT AND APPLY The genes for both the a- and...Ch. 13 - REFLECT AND APPLY Outline the methods you would...Ch. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - RECALL Why is temperature control so important in...Ch. 13 - RECALL Why is the use of temperature-stable DNA...Ch. 13 - RECALL What are the criteria for good primers in a...Ch. 13 - REFLECT AND APPLY What difficulties arise in the...Ch. 13 - REFLECT AND APPLY Each of the following pairs of...Ch. 13 - RECALL What is qPCR?Ch. 13 - Prob. 39RECh. 13 - REFLECT AND APPLY Suppose that you are a...Ch. 13 - REFLECT AND APPLY Why is DNA evidence more useful...Ch. 13 - REFLECT AND APPLY Give the DNA sequence for the...Ch. 13 - Prob. 43RECh. 13 - Prob. 44RECh. 13 - Prob. 45RECh. 13 - Prob. 46RECh. 13 - Prob. 47RECh. 13 - RECALL Has proteomic analysis been done on...Ch. 13 - Prob. 49RECh. 13 - Prob. 50RECh. 13 - Prob. 51RECh. 13 - RECALL What are the key differences between DNA...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- Draw the predominant form of glutamic acid at pH = 8.4. The pKa of the side chain is 4.1. Include proper stereochemistry. HO H2N OH pH = 8.4arrow_forwardHow would I draw this?arrow_forwardCalculate the standard change in Gibbs free energy, AGrxn, for the given reaction at 25.0 °C. Consult the table of thermodynamic properties for standard Gibbs free energy of formation values. NH,Cl(s) →NH; (aq) + C1 (aq) AGrxn -7.67 Correct Answer Determine the concentration of NH+ (aq) if the change in Gibbs free energy, AGrxn, for the reaction is -9.27 kJ/mol. 6.49 [NH+] Incorrect Answer kJ/mol Marrow_forward
- What are some topics of interest that neurotoxicologists study? For example, toxin-induced seizures, brain death, and such along those lines?arrow_forwardCould you help me with the explanation of the answer to exercise 15, chapter 1 of Lehinger Question Nombramiento de estereoisómeros con dos carbonos quirales utilizando el sistema RS(R,R)El isómero del metilfenidato (Ritalin) se utiliza para tratar el trastorno por déficit de atención con hiperactividad (TDAH).(S,S)El isómero es un antidepresivo. Identifique los dos carbonos quirales en la siguiente estructura. ¿Es este el(R,R)o el(S,S)¿isómero? Dibuja el otro isómero. Nombramiento de estereoisómeros con dos carbonos quirales utilizando el sistema RS(R,R)El isómero del metilfenidato (Ritalin) se utiliza para tratar el trastorno por déficit de atención con hiperactividad (TDAH).(S,S)El isómero es un antidepresivo.arrow_forwardThe reaction A+B → C + D AG°' = -7.3 kcal/mol can be coupled with which of the following unfavorable reactions to drive it forward? A. EFG+HAG° = 5.6 kcal/mol. B. J+KZ+A AG° = 2.3 kcal/mol. C. P+RY+DAG° = 8.2 kcal/mol. D. C + T → V + W AG°' = -5.9 kcal/mol. E. AN→ Q+KAG°' = 4.3 kcal/mol.arrow_forward
- What would be the toxicological endpoints for neurotoxicity?arrow_forwardWhat are "endpoints" in toxicology exactly? Please give an intuitive easy explanationarrow_forwardFura-2 Fluorescence (Arbitrary Unit) 4500 4000 3500 3000 2500 2000 1500 1000 500 [Ca2+]=2970nM, 25°C [Ca2+] 2970nM, 4°C [Ca2+]=0.9nM, 25°C [Ca2+] = 0.9nM, 4°C 0 260 280 300 340 360 380 400 420 440 Wavelength (nm) ← < The figure on the LHS shows the excitation spectra of Fura-2 (Em = 510 nm) in 2 solutions with two different Ca2+ ion concentration as indicated. Except for temperature, the setting for excitation & signal acquisition was identical.< ப a) The unit in Y-axis is arbitrary (unspecified). Why? < < b) Compare & contrast the excitation wavelength of the Isosbestic Point of Fura-2 at 25 °C & 4 °C. Give a possible reason for the discrepancy. < c) The fluorescence intensity at 25 °C & 4 °C are different. Explain why with the concept of electronic configuration. <arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biomolecules - Protein - Amino acids; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=ySNVPDHJ0ek;License: Standard YouTube License, CC-BY