Production functions Economists model the output of manufacturing systems using production functions that have many of the same properties as utility functions. The family of Cobb-Douglas production functions has the form P = f(K, L) = CKa L1–a, where K represents capital, L represents labor, and C and a are positive real numbers with 0 < a < 1. If the cost of capital is p dollars per unit, the cost of labor is q dollars per unit, and the total available budget is B, then the constraint takes the form pK + qL = B. Find the values of K and L that maximize the following production functions subject to the given constraint, assuming K ≥ 0 and L ≥ 0.
53. P = f(K, L) = K1/2 L1/2 for 20K + 30L = 300
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Calculus: Early Transcendentals, 2nd Edition
Additional Math Textbook Solutions
Intro Stats, Books a la Carte Edition (5th Edition)
Introductory Statistics
Algebra and Trigonometry (6th Edition)
College Algebra (7th Edition)
Calculus: Early Transcendentals (2nd Edition)
University Calculus: Early Transcendentals (4th Edition)
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage