
Explanation of Solution
The need for a process documentation standard:
In order to accomplish a business function a set of activities, repositories, roles and resources interact. This network is known as Business Process
One needs to process documentation standard because; two different software models have inconsistency and differences, which can be problematic; considering the fact especially when two different organizations with two different sets of definitions must work together. So in order to solve this problem a standard set of terms and graphical notations were created to document business processes.
Swim-Lane Layout:
In an as-is model most of the details are omitted. The process is represented in a swim-lane layout in which each role in the business process is given its own swim lane. It is useful as it simplifies the process diagram and draws attention to the interactions among components of the diagram.
The symbols in figures 12-7 and 12-8:
Fig 12.7 represents Process diagram for existing order process and figure 12.8 represents process diagram for customer credit check process.
In fig 12.7 and fig 12.8 there are five roles and hence five swim lanes are present and all activities roles are present in the swim lane.
There are two types of arrows displayed: Dotted arrows and solid arrows.
- Dotted arrows shows depict the flow of messages and data flows whereas solid arrows depict the flow of sequences of activities in the process.
- Diamonds are used to represent decisions and are basically used to represent questions which can be answered with yes or no, in which the arrows labelled yes or no exit the two ends of the diamond...

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
Using MIS (9th Edition)
- Why is Linux popular? What would make someone choose a Linux OS over others? What makes a server? How is a server different from a workstation? What considerations do you have to keep in mind when choosing between physical, hybrid, or virtual server and what are the reasons to choose a virtual installation over the other options?arrow_forwardObjective you will: 1. Implement a Binary Search Tree (BST) from scratch, including the Big Five (Rule of Five) 2. Implement the TreeSort algorithm using a in-order traversal to store sorted elements in a vector. 3. Compare the performance of TreeSort with C++'s std::sort on large datasets. Part 1: Understanding TreeSort How TreeSort Works TreeSort is a comparison-based sorting algorithm that leverages a Binary Search Tree (BST): 1. Insert all elements into a BST (logically sorting them). 2. Traverse the BST in-order to extract elements in sorted order. 3. Store the sorted elements in a vector. Time Complexity Operation Average Case Worst Case (Unbalanced Tree)Insertion 0(1log n) 0 (n)Traversal (Pre-order) 0(n) 0 (n)Overall Complexity 0(n log n) 0(n^2) (degenerated tree) Note: To improve performance, you could use a…arrow_forwardI need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forward
- My code is experincing minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forwardI would like to know the main features about the following three concepts: 1. Default forwarded 2. WINS Server 3. IP Security (IPSec).arrow_forwardmap the following ER diagram into a relational database schema diagram. you should take into account all the constraints in the ER diagram. Underline the primary key of each relation, and show each foreign key as a directed arrow from the referencing attributes (s) to the referenced relation. NOTE: Need relational database schema diagramarrow_forward
- What is business intelligence? Share the Business intelligence (BI) tools you have used and explain what types of decisions you made.arrow_forwardI need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forwardTask 3. i) Compare your results from Tasks 1 and 2. j) Repeat Tasks 1 and 2 for 500 and 5,000 elements. k) Summarize run-time results in the following table: Time/size n String StringBuilder 50 500 5,000arrow_forward
- Can you please solve this without AIarrow_forward1. Create a Vehicle.java file. Implement the public Vehicle and Car classes in Vehicle.java, including all the variables and methods in the UMLS. Vehicle - make: String model: String -year: int + Vehicle(String make, String, model, int, year) + getMake(): String + setMake(String make): void + getModel(): String + setModel(String model): void + getYear(): int + set Year(int year): void +toString(): String Car - numDoors: int + numberOfCar: int + Car(String make, String, model, int, year, int numDoors) + getNumDoors(): int + setNumDoors (int num Doors): void + toString(): String 2. Create a CarTest.java file. Implement a public CarTest class with a main method. In the main method, create one Car object and print the object using System.out.println(). Then, print the numberOfCar. Your printing result must follow the example output: make Toyota, model=Camry, year=2022 numDoors=4 1 Hint: You need to modify the toString methods in the Car class and Vehicle class!arrow_forwardCHATGPT GAVE ME WRONG ANSWER PLEASE HELParrow_forward
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education





