Concept explainers
Refer back to the data in Exercise 4, in which y = ammonium concentration (mg/L) and x = transpiration (ml/h). Summary quantities include n = 13, Σxi = 303.7, Σyi = 52.8, Sxx = 1585.230769, Sv = −341.959231. and Syy = 77.270769.
- a. Obtain the equation of the estimated regression line and use it to calculate a point prediction of ammonium concentration for a future observation made when ammonium concentration is 25 ml/h.
- b. What happens if the estimated regression line is used to calculate a point estimate of true average concentration when transpiration is 45 ml/h? Why does it not make sense to calculate this point estimate?
- c. Calculate and interpret s.
- d. Do you think the simple linear regression model does a good job of explaining observed variation in concentration? Explain.
a.
Find the interval estimate for the slope of the population regression.
Answer to Problem 35E
The 95% confidence interval for the slope of the population regression is
Explanation of Solution
Given info:
The summary statistics of the data correspond to the variables motion sickness dose
Calculation:
Linear regression model:
In a linear equation
A linear regression model is given as
Y-intercept:
In a linear equation
The general formula to obtain y-intercept is,
Slope:
In a linear equation
The general formula to obtain slope is,
The slope coefficient of the simple linear regression is,
Thus, the point estimate of the slope is
Total sum of square: (SST)
The total variation in the observed values of the response variable is defined as the total sum of squares. The formula for total sum of square is
The total sum of square is obtained as ,
Therefore, the total sum of squares is
Regression sum of square: (SSR)
The variation in the observed values of the response variable explained by the regression is defined as the regression sum of squares. The formula for regression sum of square is
The regression sum of squares is obtained as is,
Error sum of square: (SSE)
The variation in the observed values of the response variable which is not explained by the regression is defined as the error sum of squares. The formula for error sum of square is
The general formula to obtain error sum of square is,
The error sum of squares is obtained as,
Therefore, the error sum of squares is
Estimate of error standard deviation:
The general formula for the estimate of error standard deviation is,
The estimate of error standard deviation is obtained as,
Thus, the estimate of error standard deviation is
Error sum of square: (SSE)
The variation in the observed values of the response variable that is not explained by the regression is defined as the regression sum of squares. The formula for error sum of square is
Estimate of error standard deviation of slope coefficient:
The general formula for the estimate of error standard deviation of slope coefficient is,
The defining formula for
The estimate of error standard deviation of slope coefficient is,
Thus, the estimate of error standard deviation of slope coefficient is
Confidence interval:
The general formula for the confidence interval for the slope of the regression line is,
Where,
Since, the level of confidence is not specified. The prior confidence level 95% can be used.
Critical value:
For 95% confidence level,
Degrees of freedom:
The sample size is
The degrees of freedom is,
From Table A.5 of the t-distribution in Appendix A, the critical value corresponding to the right tail area 0.025 and 15 degrees of freedom is 2.131.
Thus, the critical value is
The 95% confidence interval is,
Thus, the 95% confidence interval for the slope of the population regression is
Interpretation:
There is 95% confident, that the expected change in % reported nausea associated with 1 unit increase in motion sickness dose lies between 0.632 and 2.440.
b.
Test whether there is enough evidence to conclude that the predictor variable motion sickness dose is useful for predicting the value of the response variable % reported nausea.
Answer to Problem 35E
There is sufficient evidence to conclude that the predictor variable motion sickness dose is useful for predicting the value of the response variable % reported nausea.
Explanation of Solution
Calculation:
From part (a), the slope coefficient of the regression line is
The test hypotheses are given below:
Null hypothesis:
That is, there is no useful relationship between the variables motion sickness dose
Alternative hypothesis:
That is, there is useful relationship between the variables motion sickness dose
T-test statistic:
The test statistic is,
Degrees of freedom:
The sample size is
The degrees of freedom is,
Thus, the degree of freedom is 15.
Level of significance:
Here, level of significance is not given.
So, the prior level of significance
For the level of significance
From Table A.5 of the t-distribution in Appendix A, the critical value corresponding to the right tail area 0.025 and 15 degrees of freedom is 2.131.
Thus, the critical value is
From part (a), the estimate of error standard deviation of slope coefficient is
Test statistic under null hypothesis:
Under the null hypothesis, the test statistic is obtained as follows:
Thus, the test statistic is 3.6226.
Decision criteria for the classical approach:
If
Conclusion:
Here, the test statistic is 3.6226 and critical value is 2.131.
The t statistic is greater than the critical value.
That is,
Based on the decision rule, the null hypothesis is rejected.
Hence, there is a linear relationship between the predictor variable % reported nausea and the response variable motion sickness dose.
Therefore, there is sufficient evidence to conclude that the predictor variable motion sickness dose is useful for predicting the value of the response variable % reported nausea.
c.
Check whether it is plausible to estimate the expected % reported nausea when the motion sickness dose is 5.0 using the obtained regression line.
Answer to Problem 35E
No, it is not plausible to estimate the expected % reported nausea when the motion sickness dose is 5.0 using the obtained regression line.
Explanation of Solution
Calculation:
Linear regression model:
A linear regression model is given as
Y-intercept:
In a linear equation
The general formula to obtain y-intercept is,
The y-intercept of the regression model is obtained as follows:
Thus, the y-intercept of the regression model is
From part (a), the slope coefficient of the regression line is
Therefore, the regression equation of the variables motion sickness dose
Predicted value of % reported nausea when the motion sickness dose is 5.0:
The predicted value of % reported nausea when the motion sickness dose is 5.0 is obtained as follows:
Thus, the predicted value of % reported nausea for 5.0 motion sickness dose is –7.947.
Here, the % reported nausea is resulted as a negative value, which is not possible in reality.
Thus, the predicted value is a flaw.
Moreover, it is given that the range of the values of the variable motion sickness dose is 6.0 to 17.6.
The value 5.0 is outside the range of the variable motion sickness dose. That is, the observation 5.0 is not available.
Hence, the regression line may not give good estimate of expected % reported nausea when the motion sickness dose is 5.0.
Therefore, it is not plausible to estimate the expected % reported nausea when the motion sickness dose is 5.0 using the obtained regression line.
d.
Find the interval estimate for the slope of the population regression after eliminating the observation
Comment whether the observation
Answer to Problem 35E
The 95% confidence interval for the slope of the population regression after eliminating the observation
Yes, the observation
Explanation of Solution
Calculation:
Linear regression model:
In a linear equation
A linear regression model is given as
Here, the observation
That is, the value 6.0 has to be removed from the variable motion sickness dose
The results of the summary statistics after eliminating the observation
Sample size:
Sum of the variable:
Sum of squares of the variable:
Y-intercept:
In a linear equation
The general formula to obtain y-intercept is,
Slope:
In a linear equation
The general formula to obtain slope is,
The slope coefficient of the simple linear regression is,
Thus, the point estimate of the slope is
Total sum of square: (SST)
The total variation in the observed values of the response variable is defined as the total sum of squares. The formula for total sum of square is
The total sum of square is obtained as ,
Therefore, the total sum of squares is
Regression sum of square: (SSR)
The variation in the observed values of the response variable explained by the regression is defined as the regression sum of squares. The formula for regression sum of square is
The regression sum of squares is obtained as is,
Error sum of square: (SSE)
The variation in the observed values of the response variable which is not explained by the regression is defined as the error sum of squares. The formula for error sum of square is
The general formula to obtain error sum of square is,
The error sum of squares is obtained as,
Therefore, the error sum of squares is
Estimate of error standard deviation:
The general formula for the estimate of error standard deviation is,
The estimate of error standard deviation is obtained as,
Thus, the estimate of error standard deviation is
Error sum of square: (SSE)
The variation in the observed values of the response variable that is not explained by the regression is defined as the regression sum of squares. The formula for error sum of square is
Estimate of error standard deviation of slope coefficient:
The general formula for the estimate of error standard deviation of slope coefficient is,
The defining formula for
The estimate of error standard deviation of slope coefficient is,
Thus, the estimate of error standard deviation of slope coefficient is
Confidence interval:
The general formula for the confidence interval for the slope of the regression line is,
Where,
Since, the level of confidence is not specified. The prior confidence level 95% can be used.
Critical value:
For 95% confidence level,
Degrees of freedom:
The sample size is
The degrees of freedom is,
From Table A.5 of the t-distribution in Appendix A, the critical value corresponding to the right tail area 0.025 and 14 degrees of freedom is 2.145.
Thus, the critical value is
The 95% confidence interval is,
Thus, the 95% confidence interval for the slope of the population regression is
Interpretation:
There is 95% confident, that the expected change in % reported nausea associated with 1 unit increase in motion sickness dose lies between 0.3719 and 2..7301.
Comparison:
The 95% confidence interval for the slope of the population regression with the observation
The 95% confidence interval for the slope of the population regression after eliminating the observation
Here, by observing both the intervals it is clear that the
Want to see more full solutions like this?
Chapter 12 Solutions
Probability and Statistics for Engineering and the Sciences STAT 400 - University Of Maryland
- solve the question based on hw 1, 1.41arrow_forwardT1.4: Let ẞ(G) be the minimum size of a vertex cover, a(G) be the maximum size of an independent set and m(G) = |E(G)|. (i) Prove that if G is triangle free (no induced K3) then m(G) ≤ a(G)B(G). Hints - The neighborhood of a vertex in a triangle free graph must be independent; all edges have at least one end in a vertex cover. (ii) Show that all graphs of order n ≥ 3 and size m> [n2/4] contain a triangle. Hints - you may need to use either elementary calculus or the arithmetic-geometric mean inequality.arrow_forwardWe consider the one-period model studied in class as an example. Namely, we assumethat the current stock price is S0 = 10. At time T, the stock has either moved up toSt = 12 (with probability p = 0.6) or down towards St = 8 (with probability 1−p = 0.4).We consider a call option on this stock with maturity T and strike price K = 10. Theinterest rate on the money market is zero.As in class, we assume that you, as a customer, are willing to buy the call option on100 shares of stock for $120. The investor, who sold you the option, can adopt one of thefollowing strategies: Strategy 1: (seen in class) Buy 50 shares of stock and borrow $380. Strategy 2: Buy 55 shares of stock and borrow $430. Strategy 3: Buy 60 shares of stock and borrow $480. Strategy 4: Buy 40 shares of stock and borrow $280.(a) For each of strategies 2-4, describe the value of the investor’s portfolio at time 0,and at time T for each possible movement of the stock.(b) For each of strategies 2-4, does the investor have…arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forwardQuestion 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardCharacterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forwardLet G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forward
- Prove sufficiency of the condition for a graph to be bipartite that is, prove that if G hasno odd cycles then G is bipartite as follows:Assume that the statement is false and that G is an edge minimal counterexample. That is, Gsatisfies the conditions and is not bipartite but G − e is bipartite for any edge e. (Note thatthis is essentially induction, just using different terminology.) What does minimality say aboutconnectivity of G? Can G − e be disconnected? Explain why if there is an edge between twovertices in the same part of a bipartition of G − e then there is an odd cyclearrow_forwardLet G be a connected graph that does not have P4 or C4 as an induced subgraph (i.e.,G is P4, C4 free). Prove that G has a vertex adjacent to all othersarrow_forwardWe consider a one-period market with the following properties: the current stock priceis S0 = 4. At time T = 1 year, the stock has either moved up to S1 = 8 (with probability0.7) or down towards S1 = 2 (with probability 0.3). We consider a call option on thisstock with maturity T = 1 and strike price K = 5. The interest rate on the money marketis 25% yearly.(a) Find the replicating portfolio (φ, ψ) corresponding to this call option.(b) Find the risk-neutral (no-arbitrage) price of this call option.(c) We now consider a put option with maturity T = 1 and strike price K = 3 onthe same market. Find the risk-neutral price of this put option. Reminder: A putoption gives you the right to sell the stock for the strike price K.1(d) An investor with initial capital X0 = 0 wants to invest on this market. He buysα shares of the stock (or sells them if α is negative) and buys β call options (orsells them is β is negative). He invests the cash balance on the money market (orborrows if the amount is…arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage