MECHANICS OF MATERIALS
11th Edition
ISBN: 9780137605521
Author: HIBBELER
Publisher: RENT PEARS
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 12.2, Problem 17P
Determine the equations of the elastic curve for the beam using the x1 and x2 coordinates. Specify the beam’s maximum deflection. El is constant.
Prob. 12–17
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the shape factor for the wide-lange beam.
Determine the elastic curve for the cantilevered W14 * 30 beam using the x coordinate. Specify the maximum slope and maximum deflection. E = 29(103) ksi .
Use the method of integration
Chapter 12 Solutions
MECHANICS OF MATERIALS
Ch. 12.2 - Determine the slope and deflection of end A of the...Ch. 12.2 - Determine the slope and deflection of end A of the...Ch. 12.2 - Determine the slope of end A of the cantilevered...Ch. 12.2 - Determine the maximum deflection of the simply...Ch. 12.2 - Determine the maximum deflection of the simply...Ch. 12.2 - Determine the slope of the simply supported beam...Ch. 12.2 - An L2 steel strap having a thickness of 0.125 in....Ch. 12.2 - The L2 steel blade of the band saw wraps around...Ch. 12.2 - A picture is taken of a man performing a pole...Ch. 12.2 - A torque wrench is used to tighten the nut on a...
Ch. 12.2 - The pipe can be assumed roller supported at its...Ch. 12.2 - Determine the equations of the elastic curve for...Ch. 12.2 - Determine the equations of the elastic curve using...Ch. 12.2 - Determine the maximum deflection of the solid...Ch. 12.2 - Determine the equation of the elastic curve using...Ch. 12.2 - Determine the equations of the elastic curve using...Ch. 12.3 - The shaft supports the two pulley loads shown....Ch. 12.3 - Determine the equation of the elastic curve, the...Ch. 12.3 - Determine the equation of the elastic curve and...Ch. 12.3 - Determine the maximum deflection of the...Ch. 12.3 - Prob. 45PCh. 12.3 - Prob. 46PCh. 12.3 - Prob. 47PCh. 12.3 - Prob. 48PCh. 12.4 - Determine the slope and deflection of end A of the...Ch. 12.4 - Determine the slope and deflection of end A of the...Ch. 12.4 - Determine the slope and deflection of end A of the...Ch. 12.4 - Determine the slope and deflection at A of the...Ch. 12.4 - Prob. 11FPCh. 12.4 - Determine the maximum deflection of the simply...Ch. 12.4 - Determine the slope and deflection at C. El is...Ch. 12.4 - Prob. 54PCh. 12.4 - The composite simply supported steel shaft is...Ch. 12.4 - Determine the maximum deflection of the...Ch. 12.4 - Prob. 60PCh. 12.4 - Determine the slope at A and the maximum...Ch. 12.4 - Determine the displacement of the 20-mm-diameter...Ch. 12.4 - The two force components act on the tire of the...Ch. 12.4 - Determine the slope at B and deflection at C. El...Ch. 12.4 - Prob. 79PCh. 12.5 - The W10 15 cantilevered beam is made of A-36...Ch. 12.5 - The W14 43 simply supported beam is made of A992...Ch. 12.5 - The W14 43 simply supported beam is made of A992...Ch. 12.5 - The W14 43 simply supported beam is made of A-36...Ch. 12.7 - Determine the reactions at the supports A and B,...Ch. 12.7 - Determine the reactions at the supports A, B, and...Ch. 12.7 - Determine the reactions at the supports A and B,...Ch. 12.7 - The beam has a constant E1I1 and is supported by...Ch. 12.8 - Determine the reaction at the supports, then draw...Ch. 12.9 - Determine the reactions at the fixed support A and...Ch. 12.9 - Determine the reactions at the fixed support A and...Ch. 12.9 - Determine the reactions at the fixed support A and...Ch. 12.9 - Determine the reaction at the roller B. EI is...Ch. 12.9 - Determine the reaction at the roller B. EI is...Ch. 12.9 - Determine the reaction at the roller support B if...Ch. 12.9 - Determine the reactions at the journal bearing...Ch. 12.9 - Determine the reactions at the supports, then draw...Ch. 12.9 - Determine the reactions at the supports, then draw...Ch. 12.9 - The rim on the flywheel has a thickness t, width...Ch. 12.9 - Determine the moment developed in each corner....Ch. 12 - Determine the equation of the elastic curve. Use...Ch. 12 - Draw the bending-moment diagram for the shaft and...Ch. 12 - Determine the moment reactions at the supports A...Ch. 12 - Specify the slope at A and the maximum deflection....Ch. 12 - Determine the maximum deflection between the...Ch. 12 - Determine the slope at B and the deflection at C....Ch. 12 - Determine the reactions, then draw the shear and...Ch. 12 - El is constant.Ch. 12 - Using the method of superposition, determine the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Draw the bending-moment diagram for the shaft and then, from this diagram, sketch the deflection or elastic curve for the shaft’s centerline. Determine the equations of the elastic curve using the coordinates x1 and x2. EI is constantarrow_forward12-23. Determine the equation of the elastic curve using the x coordinate. Specify the slope at A and the maximum deflection. El is constant. *12-24. Determine the displacement at the center of the beam and the slope at B. EI is constant. A Mo ― L Probs. 12-23/24 Mo Barrow_forwardPlease help on the question in the photo using the table also attachedarrow_forward
- Use the Moment-Area theorems and determine the slope at A and displacement at C. EI is constant. Draw the shear diagram, moment diagram, and deflection shape diagram in the process.arrow_forwardDetermine the maximum deflection of the beam and the slope at A. Use Macaulay's brackets in your derivation, setting the origin at A, to find a single expression for the slope and deflection over the entire length of the beam. El is constant. Mo Mo Barrow_forwardDetermine the equation of the elastic curve and the maximum deflection of the simply supported beam. EI is constant.arrow_forward
- Determine the maximum deflection of the simply supported beam. The beam is made of wood having a modulus of elasticity of Ew = 1.5(103) ksi and a rectangular cross section of width b = 3 in. and height h = 6 in.arrow_forwardThe beam supports the distributed loading wo = 20 kN/m and has a 4 m length. Determine its maximum deflection. E=200 GPa and I = 40 (106) m4 W= Wo Elastic curve x. L L 2 2arrow_forwardM93. The moment diagram for the fix-ended beam is shown in the below Figure. Determine the maximum vertical deflection and maximum slope and their locations. nemam bre nadmam ar animetab boritem nollbellab equie sritt gniau hoqque te enolizes 125 kips oelA snupit woled ari ni wore em 08 bris 8A neden ol -360 PV-507 A 48° B 12' 288 kip.ft nemam brie serie or weib ona -240arrow_forward
- Determine the equations of the elastic curve using the coordinates x1 and x3. What is the slope and deflection at point B? EI is constant.arrow_forwardConsider the beam and loading shown. Use E = 215 GPa. Determine the slope at end A and the deflection at point Carrow_forward2. Using the conjugate beam method, determine the maximum deflection of the beam. Use E = 10,000 ksi and I = 500 in4. 30 k A B -14 ft- -7 ft-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Solids: Lesson 53 - Slope and Deflection of Beams Intro; Author: Jeff Hanson;https://www.youtube.com/watch?v=I7lTq68JRmY;License: Standard YouTube License, CC-BY