Concept explainers
The required amounts of components such as cement in sacks, sand and gravel in pounds, and water in gallons.
Answer to Problem 63AAP
The required amounts of components to produce
- Cement - 22.43 sacks
- Sand - 4126 lb
- Gravel - 8012 lb
- Water - 109 gal
Explanation of Solution
Write the formula for saturated surface dry density.
Calculate the saturated surface dry density of constituents using Equation (I) as shown in Table 1.
Constituents | Specific gravity | Density of water in | SSDD in |
Cement | 3.15 | 62.4 | 197 |
Sand | 2.65 | 62.4 | 165 |
Gravel | 2.65 | 62.4 | 165 |
Water | 1 | 62.4 | 62.4 |
Table 1
Write the formula for absolute volume of constituents per sack of cement.
Calculate the absolute volume of constituents per sack of cement using Equation (II) as shown in Table 2.
Constituent | Weight ratio of the constituents | Weight of cement per sack | Weight of the constituents | SSDD | Absolute volume of constituent in |
Cement | 1 | 94 | 94 | 197 | |
Sand | 1.9 | 94 | 178.6 | 165 | |
Gravel | 3.8 | 94 | 357.2 | 165 | |
Water | 5.5 gal per sack of cement | ||||
Total absolute volume of constituents per sack of cement |
Table 2
On dry basis:
The required amount of sacks of cement to produce
The required amount of sand to produce
The required amount of gravel to produce
The required amount of water to produce
On wet basis:
Since, the sand is having the moisture content of
The required amount of the wet sand is expressed as follows.
The weight of water present in the sand is expressed as follows.
The moisture content of the gravel is zero. Thus, the weight of water present in gravel is zero.
The required weight of water is expressed as follows.
Thus, the required amounts of components to produce
- Cement - 22.43 sacks
- Sand - 4126 lb
- Gravel - 8012 lb
- Water - 109 gal
Want to see more full solutions like this?
Chapter 12 Solutions
Foundations of Materials Science and Engineering
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Solve this and show all of the workarrow_forwardNeed helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY