Concept explainers
A curve in a speed track has a radius of 1000 ft and a rated speed of 120 mi/h. (See Sample Prob. 12.7 for the definition of rated speed.) Knowing that a racing car starts skidding on the curve when traveling at a speed of 180 mi/h, determine (a) the banking angle θ, (b) the coefficient of static friction between the tires and the track under the prevailing conditions, (c) the minimum speed at which the same car could negotiate the curve.
Fig. P12.52
(a)
Find the banking angle
Answer to Problem 12.52P
The banking angle
Explanation of Solution
Given information:
The radius
The rated speed
The frictional force
The speed (v) at prevailing condition is 180 mi/h.
Calculation:
Write the general equation weight (W).
Here, m is the mass and g is the acceleration due to gravity.
Write the general equation of acceleration (a) in curved path.
Here, v is the speed and
Sketch the free body diagram and kinetic diagram of the racing car as shown in Figure (1).
Refer Figure (1):
Consider the racing car moves at rated speed.
Find the banking angle
Apply Newton’s law of equation along x-axis.
Substitute 0 for
Substitute 120 mi/h for
Thus, the banking angle
(b)
Find the coefficient of static friction between the tires and the track under the prevailing conditions.
Answer to Problem 12.52P
The coefficient of static friction between the tires and the track under the prevailing conditions is
Explanation of Solution
Calculation:
Refer Figure (1):
Consider the racing car moves in prevailing condition.
Apply Newton’s law of equation along y-axis.
Substitute
Apply Newton’s law of equation along y-axis.
Substitute
Find the coefficient of static friction
Write the general equation of normal force(N).
Substitute Equation (1) and (2) in Equation (3).
Substitute 180 mi/h for v,
Thus, the coefficient of static friction between the tires and the track under the prevailing conditions is
(c)
Find the minimum speed at which the same car could negotiate that curve.
Answer to Problem 12.52P
The minimum speed at which the same car could negotiate that curve is
Explanation of Solution
Calculation:
Write the general equation of normal force (N) in minimum speed.
Substitute Equation (1) and (2) in Equation (3).
Substitute 0.390 for
Thus, the minimum speed at which the same car could negotiate that curve is
Want to see more full solutions like this?
Chapter 12 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forward
- University of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forwardSolve using graphical method and analytical method, only expert should solvearrow_forwardSolve this and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY