Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.1, Problem 12.1GI
The figure shows three pairs of forces acting on an object. Which pair, acting as the only forces on the object, results in static equilibrium? Explain why the others don’t.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Three forces F, = 20 N, F2 = 10 N and F, = 5.0 N act on the structure shown in figure below. A
fourth force F, to be applied at a point P on the structure to keep it in equilibrium. The fourth
force has two components Fv and Fh. Given that a = 2.0 m, b = 3.0 m and c = 1.0 m, Calculate
%3D
%3D
%3D
%3D
Fh, Fv and d
k
Oa Fh- 15N,Fv 10N=,d= 3m
Ob Fh-30N,Fv SN,d-133m
Oc Fh= 10N, Fv 15N=,d = 3m
Od. Fh - SN,Fv 30N-,d-133m
The figure shows two forces of equal magnitude acting on an object. If the common
magnitude of the forces is 4.6 N and the angle between them is 40°, what third force
will cause the object to be in equilibrium?
O a) 7.0 N pointing to the right
b) 8.2 N pointing to the right
c) 3.5 N pointing to the right
d) 8.6 N pointing to the right
When the structure shown below is supported at point P, it is in equilibrium. Find the magnitude of force F and the force applied at P. The weight of the structure is
negligible.
2.3 m
F
4.6 m2.3 m
-2.3 m
1800 N
Р
3.5 m
800 N
900 N
Submit Answer Incorrect. Tries 2/40 Previous Tries
Find the force applied at P.
Magnitude =
Direction =
Submit Answer Tries 0/40
(wrt the +x-axis)
K
Chapter 12 Solutions
Essential University Physics (3rd Edition)
Ch. 12.1 - The figure shows three pairs of forces acting on...Ch. 12.2 - Prob. 12.2GICh. 12.3 - The figure shows a person in static equilibrium...Ch. 12.4 - Prob. 12.4GICh. 12 - Give an example of an object on which the net...Ch. 12 - Give an example of an object on which the net...Ch. 12 - Prob. 3FTDCh. 12 - Pregnant women often assume a posture with their...Ch. 12 - When you carry a bucket of water with one hand,...Ch. 12 - Is a ladder more likely to slip when you stand...
Ch. 12 - How does a heavy keel help keep a boat from...Ch. 12 - Does choosing a pivot point in an equilibrium...Ch. 12 - If you take the pivot point at the application...Ch. 12 - A short dog and a tall person are standing on a...Ch. 12 - Prob. 11FTDCh. 12 - A body is subject to three forces; F1=1i+2jN,...Ch. 12 - To demonstrate that the choice of pivot point...Ch. 12 - In Fig. 12.11 the forces shown all have the same...Ch. 12 - Figure 12.12a shows a thin, uniform square plate...Ch. 12 - Repeat the preceding problem for the equilateral...Ch. 12 - A 23-m-long log of irregular cross section lies...Ch. 12 - A 60-kg uniform board 2.4 m long is supported by a...Ch. 12 - Where should the child in Fig. 12.14 sit if the...Ch. 12 - A 4.2-m-long beam is supported by a cable at its...Ch. 12 - Figure 12.15 shows how a scale with a capacity of...Ch. 12 - A portion of a roller-coaster track is described...Ch. 12 - Prob. 23ECh. 12 - Youre a highway safety engineer, and youre asked...Ch. 12 - Figure 12.17a shows an outstretched arm with mass...Ch. 12 - A uniform sphere of radius R is supported by a...Ch. 12 - You work for a garden equipment company, and youre...Ch. 12 - Figure 12.20 shows the fool and lower leg of a...Ch. 12 - A uniform 5.0-kg ladder is leaning against a...Ch. 12 - The boom in the crane of Fig. 12.21 is free to...Ch. 12 - A uniform board of length L and weight W is...Ch. 12 - Figure 12.23 shows a 1250-kg car that has slipped...Ch. 12 - Repeat Example 12.2, now assuming that the...Ch. 12 - You are headwaiter at a new restaurant, and your...Ch. 12 - Climbers attempting to cross a stream place a...Ch. 12 - A crane in a marble quarry is mounted on the...Ch. 12 - A rectangular block measures w w L, where L is...Ch. 12 - The potential energy as a function of position for...Ch. 12 - A rectangular block of mass m measures w w L,...Ch. 12 - A 160-kg highway sign of uniform density is 2.3 m...Ch. 12 - A 5.0-m-long ladder has mass 9.5 kg and is leaning...Ch. 12 - Prob. 42PCh. 12 - A uniform, solid cube of mass m and side s is in...Ch. 12 - An isosceles triangular block of mass m and height...Ch. 12 - Youre investigating ladder safety for the Consumer...Ch. 12 - A 2.0-m-long rod has density in kilograms per...Ch. 12 - What horizontal force applied at its highest point...Ch. 12 - A rectangular block twice as high as it is wide is...Ch. 12 - What condition on the coefficient of friction in...Ch. 12 - A uniform solid cone of height h and base diameter...Ch. 12 - Prove the statement in Section 12.1 that the...Ch. 12 - Three identical books of length L are stacked over...Ch. 12 - A uniform pole of mass M is at rest on an incline...Ch. 12 - For what angle does the situation in Problem 53...Ch. 12 - Figure 12.31 shows a popular system for mounting...Ch. 12 - The nuchal ligament is a thick, cordlike structure...Ch. 12 - A 4.2-kg plant hangs from the bracket shown in...Ch. 12 - The wheel in Fig. 12.34 has mass M and is weighted...Ch. 12 - An interstellar spacecraft from an advanced...Ch. 12 - Youre called to testify in a product liability...Ch. 12 - Youre designing a vacation cabin at a ski resort....Ch. 12 - Prob. 62PCh. 12 - Engineers designing a new semiconductor device...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
58. Is each compound soluble or insoluble? For the soluble compounds, identify the ions present in solution.
a....
Introductory Chemistry (6th Edition)
Dr. Ara B. Dopsis and Dr. C. Ellie Gans are performing genetic crosses on daisy plants. They self-fertilize a b...
Genetic Analysis: An Integrated Approach (3rd Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
72. Which of the following describes the charges on the droplets that end up in the five tubes, moving from lef...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two forces are acting on an object. Which of the following statements is correct? (a) The object is in equilibrium if the forces are equal in magnitude and opposite in direction. (b) The object is in equilibrium if the net torque on the object is zero. (c) The object is in equilibrium if the forces act at the same point on the object. (d) The object is in equilibrium if the net force and the net torque on the object are both zero. (e) The object cannot be in equilibrium because more than one force acts on it.arrow_forwardA painter of mass 87.8 kg is 1.45 m from the top of a 6.67-m ladder. The ladder rests against a wall. Friction between the ladder and the wall is negligible. The ladders mass is 5.50 kg. Assume the ladder is set up according to Occupational Safety and Health Administration standards so that it makes a 75.5 angle with the floor. a. What is the minimum coefficient of static friction required for the painters safety? b. Would rubber ladder tips on dry concrete be safe?arrow_forwardA 20.0-kg horizontal plank 4.00 in long rests on two supports, one at the left end and a second 1.00 m from the right end. What is the magnitude of the force exerted on the plank by the support near the right end? (a) 32.0 N (b) 45.2 N (c) 112 N (d) 131 N (e) 98.2 Narrow_forward
- BIO When a gymnast performing on the rings executes the iron cross, he maintains the position at rest shown in Figure P10.85a. In this maneuver, the gymnasts feet (not shown) are off the floor. The primary muscles involved in supporting this position are the latissimus dorsi (lats) and the pectoralis major (pecs). One of the rings exerts an upward fore Fh on a hand as shown in Figure P10.85b. The force Fs is exerted by the shoulder joint on the arm. The latissimus dorsi and pectoralis major muscles exert a total force Fm on the arm. (a) Using the information in the figure, find the magnitude of the force Fm. (b) Suppose an athlete in training cannot perform the iron cross but can hold a position similar to the figure in which the arms make a 45 angle with the horizontal rather than being horizontal. Why is this position easier for the athlete? Figure P10.85arrow_forwardProblems 33 and 34 are paired. One end of a uniform beam that weighs 2.80 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable. FIGURE P14.33 Problems 33 and 34.arrow_forwardA One end of a metal rod of weight Fg and length L presses against a corner between a wall and the floor (Fig. P14.64). A rope is attached to the other end of the rod. Find the magnitude of the tension in the rope if the angle between the rod and the rope is 90.arrow_forward
- A massless, horizontal beam of length L and a massless rope support a sign of mass m (Fig. P14.78). a. What is the tension in the rope? b. In terms of m, g, d, L, and , what are the components of the force exerted by the beam on the wall? FIGURE P14.78arrow_forwardA crane of mass m1 = 3 000 kg supports a load of mass m2 = 10 000 kg as shown in Figure P10.36. The crane is pivoted with a frictionless pin at A and rests against a smooth support at B. Find the reaction forces at (a) point A and (b) point B. Figure P10.36arrow_forwardA wooden door 2.1 m high and 0.90 m wide is hung by two hinges 1.8 m apart. The lower hinge is 15 cm above the bottom of the door. The center of mass of the door is at its geometric center, and the weight of the door is 260 N, which is supported equally by both hinges. Find the horizontal force exerted by each hinge on the door.arrow_forward
- (a) Give an example in which the net force acting on an object is zero, yet the net torque is nonzero, (b) Give an example in which the net torque acting on an object is zero, yet the net force is nonzero.arrow_forwardModeled after problem 5 in the Problems_Torque_Statics: A 13.98-m-high and 12.18-m-long wall under construction and its bracing are shown in the figure. The wall is in stable equilibrium without the bracing but can pivot at its base. Calculate the force exerted by each of the 10 braces if a strong wind exerts a horizontal force of 586.31 N on each square meter of the wall. Assume that the net force from the wind acts at a height halfway up the wall and that all braces exert equal forces parallel to their lengths. Neglect the thickness of the wall. The angle between the braces and the wall is as shown in the figure as 35 degrees.arrow_forwardModelled after problem 5 in the Problems_Torque_Statics: A 16.19-m-high and 11.44-m-long wall under construction and its bracing are shown in the figure. The wall is in stable equilibrium without the bracing but can pivot at its base. Calculate the force exerted by each of the 10 braces if a strong wind exerts a horizontal force of 673.77 N on each square meter of the wall. Assume that the net force from the wind acts at a height halfway up the wall and that all braces exert equal forces parallel to their lengths. Neglect the thickness of the wall. The angle between the braces and the wall is as shown in the figure as 35 degrees. answer is 21,756.7113 but how?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY