OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
5th Edition
ISBN: 9781285460369
Author: STANITSKI
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 12, Problem 92QRT

(a)

Interpretation Introduction

Interpretation:

The mass of Ni(CO)4 that can be formed from 2.05 g CO with 0.125 g Nickel metal has to be calculated.

(a)

Expert Solution
Check Mark

Explanation of Solution

Balanced reaction is,

  Ni(s)+4CO(g)Ni(CO)4(g)

Mole of CO in 2.05 g CO is,

    =2.05gCO×1molCO28.0101CO=0.0183mol

Nickel metal in 0.125 g Nickel is,

  =0.125gNi×1molNi58.6934gNi=0.000213mol

The lowest mole is limiting reagent so Nickel is the reagent.

The mass of Ni(CO)4 that can be formed from  0.000213  mol Nickel is,

  =0.000213Ni(CO)4×170.7338gNi(CO)41molNi(CO)4=0.363gNi(CO)4

Hence, the mass of Ni(CO)4 that can be formed from 2.05 g CO with 0.125 g Nickel metal is 0.363g.

(b)

Interpretation Introduction

Interpretation:

The enthalpy change of decomposition reaction of Ni(CO)4 has to be calculated.

Concept Introduction:

Hess's Law:

The enthalpy change of given reaction is calculated by subtraction of sum of enthalpy of formation reactants from sum of enthalpy of formation reactant products.

  ΔHrex=ΔHproduct-ΔHreactant

(b)

Expert Solution
Check Mark

Explanation of Solution

Balanced reaction is,

  Ni(s)+4CO(g)Ni(CO)4(g)

The standard formation enthalpy of Ni(CO)4 gas is -602.9 kJ/mol

    ΔHrex=ΔHo(Ni(s))+4ΔHo(CO(g))-ΔHo(Ni(CO)4(g)=0(kJ/mol)+4(-110.525kJ/mol)-(-602.9kJ/mol)=161.9kJ/mol

The enthalpy change of decomposition reaction of Ni(CO)4 is 161.9kJ/mol and it is an endothermic reaction.

(c)

Interpretation Introduction

Interpretation:

It has to be predicted whether there is an increase or a decrease in entropy when this reaction occurs.

  Ni(s)+4CO(g)Ni(CO)4(g)

(c)

Expert Solution
Check Mark

Explanation of Solution

Given reaction is,   

  Ni(CO)4(g)Ni(s)+4CO(g)11+4

The mole of product is increases, when entropy of the forward reaction is increased.

In the given reaction, 5 mole of products formed from 1 mole of reactant so entropy is increased in the given reaction.

(d-i)

Interpretation Introduction

Interpretation:

The equilibrium concentration of CO in the flask has to be calculated.

Concept Introduction:

Equilibrium constant(Kc):

Equilibrium constant (Kc) is the ratio of the rate constants of the forward and reverse reactions at a given temperature.  In other words it is the ratio of the concentrations of the products to concentrations of the reactants.  Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction.

Consider the reaction where A reacts to give B.

    aAbB

    Rate of forward reaction = Rate of reverse reactionkf[A]a=kr[B]b

On rearranging,

    [B]b[A]a=kfkr=Kc

Where,

    kf is the rate constant of the forward reaction.

    kr is the rate constant of the reverse reaction.

    Kc is the equilibrium constant.

(d-i)

Expert Solution
Check Mark

Explanation of Solution

Given reaction is,

  Ni(CO)4(g)Ni(s)+4CO(g)

ICE table for at given condition with given concentrations,

    Ni(CO)4(g)Ni(s)+4CO(g)initial0.01solid0change-xsolid+4xequilibrium0.01-x4x

At equilibrium,

    [Ni(CO)4]=0.01-x=0.00001x=0.01-0.00001=0.01[CO]=4x=0.04MKc=[CO]4[Ni(CO)4]=(0.04)40.00001=0.3

Hence, the equilibrium concentration of CO in the flask is 0.04M.

(d-ii)

Interpretation Introduction

Interpretation:

The value of the equilibrium constant Kc for this reaction at 100 °C has to be calculated.

Concept Introduction:

Refer part (d-i).

(d-ii)

Expert Solution
Check Mark

Explanation of Solution

Given reaction is,

  Ni(CO)4(g)Ni(s)+4CO(g)

ICE table for at given condition with given concentrations,

    Ni(CO)4(g)Ni(s)+4CO(g)initial0.01solid0change-xsolid+4xequilibrium0.01-x4x

At equilibrium,

    [Ni(CO)4]=0.01-x=0.00001x=0.01-0.00001=0.01[CO]=4x=0.04MKc=[CO]4[Ni(CO)4]=(0.04)40.00001=0.3

Hence, the value of equilibrium constant Kc for this reaction at 100 °C is 0.3.

(d-iii)

Interpretation Introduction

Interpretation:

The value of the equilibrium constant Kp for this reaction at 100 °C has to be calculated.

(d-iii)

Expert Solution
Check Mark

Explanation of Solution

Given reaction is,

  Ni(CO)4(g)Ni(s)+4CO(g)

The relationship between Kc and Kp is,

    Kp=Kc(RT)Δn

In the given balanced reaction, mole change, temperature and Kc are,

    Δn=4molCO(g)-1molNi(CO)4(g)=3T=100°C+273=373KKc=0.3

The value of equilibrium constant Kp for this reaction at 100 °C,

    Kp=(0.3)×[(0.08206L×atmmol×K)×(373K)]3=9×103

Hence, the value of equilibrium constant Kp for this reaction at 100 °C is 9×103.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting
(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!

Chapter 12 Solutions

OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:

Ch. 12.5 - For the equilibrium 2 SO2(g) + O2(g) 2 SO3(g) Kc...Ch. 12.5 - Prob. 12.7CECh. 12.5 - Prob. 12.6PSPCh. 12.5 - Prob. 12.7PSPCh. 12.6 - Prob. 12.8CECh. 12.6 - Prob. 12.9ECh. 12.6 - Prob. 12.10CECh. 12.6 - Prob. 12.8PSPCh. 12.7 - For the ammonia synthesis reaction ⇌ Does the...Ch. 12.8 - Prob. 12.13CECh. 12 - Prob. 1QRTCh. 12 - Prob. 2QRTCh. 12 - Prob. 3QRTCh. 12 - Decomposition of ammonium dichromate is shown in...Ch. 12 - For the equilibrium reaction in Question 4, write...Ch. 12 - Indicate whether each statement below is true or...Ch. 12 - Prob. 7QRTCh. 12 - Prob. 8QRTCh. 12 - Prob. 9QRTCh. 12 - Prob. 10QRTCh. 12 - The atmosphere consists of about 80% N2 and 20%...Ch. 12 - Prob. 12QRTCh. 12 - Prob. 13QRTCh. 12 - Prob. 14QRTCh. 12 - Prob. 15QRTCh. 12 - Prob. 16QRTCh. 12 - Prob. 17QRTCh. 12 - Prob. 18QRTCh. 12 - Prob. 19QRTCh. 12 - Prob. 20QRTCh. 12 - Prob. 21QRTCh. 12 - Prob. 22QRTCh. 12 - Prob. 23QRTCh. 12 - Prob. 24QRTCh. 12 - Prob. 25QRTCh. 12 - Prob. 26QRTCh. 12 - Prob. 27QRTCh. 12 - Prob. 28QRTCh. 12 - Prob. 29QRTCh. 12 - Prob. 30QRTCh. 12 - Given these data at a certain temperature,...Ch. 12 - The vapor pressure of water at 80. C is 0.467 atm....Ch. 12 - Prob. 33QRTCh. 12 - Prob. 34QRTCh. 12 - Prob. 35QRTCh. 12 - Prob. 36QRTCh. 12 - Carbon dioxide reacts with carbon to give carbon...Ch. 12 - Prob. 38QRTCh. 12 - Prob. 39QRTCh. 12 - Prob. 40QRTCh. 12 - Nitrosyl chloride, NOC1, decomposes to NO and Cl2...Ch. 12 - Suppose 0.086 mol Br2 is placed in a 1.26-L flask....Ch. 12 - Prob. 43QRTCh. 12 - Prob. 44QRTCh. 12 - Prob. 45QRTCh. 12 - Using the data of Table 12.1, predict which of...Ch. 12 - Prob. 47QRTCh. 12 - The equilibrium constants for dissolving silver...Ch. 12 - Prob. 49QRTCh. 12 - Prob. 50QRTCh. 12 - At room temperature, the equilibrium constant Kc...Ch. 12 - Prob. 52QRTCh. 12 - Consider the equilibrium N2(g)+O2(g)2NO(g) At 2300...Ch. 12 - The equilibrium constant, Kc, for the reaction...Ch. 12 - Prob. 55QRTCh. 12 - Prob. 56QRTCh. 12 - Prob. 57QRTCh. 12 - At 503 K the equilibrium constant Kc for the...Ch. 12 - Prob. 59QRTCh. 12 - Prob. 60QRTCh. 12 - Prob. 61QRTCh. 12 - Prob. 62QRTCh. 12 - Prob. 63QRTCh. 12 - Prob. 64QRTCh. 12 - Prob. 65QRTCh. 12 - Prob. 66QRTCh. 12 - Prob. 67QRTCh. 12 - Hydrogen, bromine, and HBr in the gas phase are in...Ch. 12 - Prob. 69QRTCh. 12 - Prob. 70QRTCh. 12 - Prob. 71QRTCh. 12 - Prob. 72QRTCh. 12 - Prob. 73QRTCh. 12 - Prob. 74QRTCh. 12 - Consider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) +...Ch. 12 - Prob. 76QRTCh. 12 - Predict whether the equilibrium for the...Ch. 12 - Prob. 78QRTCh. 12 - Prob. 79QRTCh. 12 - Prob. 80QRTCh. 12 - Prob. 81QRTCh. 12 - Prob. 82QRTCh. 12 - Prob. 83QRTCh. 12 - Prob. 84QRTCh. 12 - Prob. 85QRTCh. 12 - Prob. 86QRTCh. 12 - Prob. 87QRTCh. 12 - Consider the decomposition of ammonium hydrogen...Ch. 12 - Prob. 89QRTCh. 12 - Prob. 90QRTCh. 12 - Prob. 91QRTCh. 12 - Prob. 92QRTCh. 12 - Prob. 93QRTCh. 12 - Prob. 94QRTCh. 12 - Prob. 95QRTCh. 12 - Prob. 96QRTCh. 12 - Prob. 97QRTCh. 12 - Prob. 98QRTCh. 12 - Prob. 99QRTCh. 12 - Prob. 100QRTCh. 12 - Two molecules of A react to form one molecule of...Ch. 12 - Prob. 102QRTCh. 12 - In Table 12.1 (←Sec. 12-3a) the equilibrium...Ch. 12 - Prob. 104QRTCh. 12 - Prob. 105QRTCh. 12 - Prob. 106QRTCh. 12 - Prob. 107QRTCh. 12 - Which of the diagrams for Questions 107 and 108...Ch. 12 - Draw a nanoscale (particulate) level diagram for...Ch. 12 - The diagram represents an equilibrium mixture for...Ch. 12 - The equilibrium constant, Kc, is 1.05 at 350 K for...Ch. 12 - For the reaction in Question 111, which diagram...Ch. 12 - Prob. 113QRTCh. 12 - Prob. 114QRTCh. 12 - Prob. 115QRTCh. 12 - For the equilibrium...Ch. 12 - Prob. 117QRTCh. 12 - Prob. 119QRTCh. 12 - Prob. 120QRTCh. 12 - When a mixture of hydrogen and bromine is...Ch. 12 - Prob. 122QRTCh. 12 - Prob. 123QRTCh. 12 - Prob. 124QRTCh. 12 - Prob. 125QRTCh. 12 - Prob. 12.ACPCh. 12 - Prob. 12.BCPCh. 12 - Prob. 12.CCPCh. 12 - Prob. 12.DCPCh. 12 - Prob. 12.ECPCh. 12 - Prob. 12.FCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY