(a)
Interpretation:
The equilibrium constant expressions in terms of the unknown variable x for each given reactions has to be written by using the reaction table (ICE table) approach.
Concept Introduction:
Equilibrium constant
Equilibrium constant
Consider the reaction where A reacts to give B.
On rearranging,
Where,
(a)
Explanation of Solution
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The equilibrium constant expressions in terms of the unknown variable x for 2 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for 2 reaction is,
The equilibrium constant expressions in terms of the unknown variable x for 3 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for given reaction is,
The equilibrium constant expressions in terms of the unknown variable x for 4 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for given reaction is,
(b)
Interpretation:
The equilibrium constant expressions in terms of the unknown variable x for each given reactions has to be written, which of these expressions yield quadratic equations has to be given.
Concept Introduction:
Refer part (a).
(b)
Explanation of Solution
The given reactions and it’s the equilibrium constant expressions in terms of the unknown variable x are,
From the equilibrium constant expression, it does not yield quadratic equation.
From the equilibrium constant expression, it yields quadratic equation.
From the equilibrium constant expression, it yields quadratic equation.
From the equilibrium constant expression, it yields quadratic equation.
(c)
Interpretation:
The equilibrium constant expression in terms of the unknown variable x for given reaction has to be written and solving of x has to be explained.
Concept Introduction:
Refer to part (a).
(c)
Explanation of Solution
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The above expression is not a quadratic equation so it is solved as shown below,
The changes in stoichiometry of limiting reactant, the reaction is left favors so the x is calculated as fallows,
The valve of x is calculated as,
The calculated vale is,
Want to see more full solutions like this?
Chapter 12 Solutions
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
- In three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- 8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward6. Draw the products) formed from the following reactions. (a) HIarrow_forward
- Don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward1. For each of the following, predict the products of the reaction by writing a balance net ionic equation for each. If no reaction is expected, then write NO REACTION. (a) AgNO3 (aq) is mixed with Na2CO3 (aq). (b) An aqueous solution of ammonium sulfate is added to an aqueous solution of calcium chloride. (c) RbI (aq) is added to Pb(NO3)2 (aq). (d) NaCl (s) is added to AgNO3 (aq).arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning