EBK ENGINEERING MECHANICS
15th Edition
ISBN: 9780137569830
Author: HIBBELER
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 92P
The ball at A is kicked such that θA = 30°. If it strikes the ground at B having coordinates x = 15 ft, y = –9 ft, determine the speed at which it is kicked and the speed at which it strikes the ground.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
oyfr
3. The figure shows a frame under the
influence of an external loading made up
of five forces and two moments. Use the
scalar method to calculate moments.
a. Write the resultant force of the
external loading in Cartesian vector
form.
b. Determine the
& direction
of the resultant moment of the
external loading about A.
15 cm
18 cm
2.2 N-m
B
50 N
45°
10 cm
48 N.m
250 N
60 N
20
21
50 N
25 cm
100 N
A
118,
27cm 5, 4:1
Assume the Link AO is the input and revolves 360°, determine a. the coordinates of limit positions of point B, b. the angles (AOC) corresponding to the limit positions
oyfr
3. The figure shows a frame under the
influence of an external loading made up
of five forces and two moments. Use the
scalar method to calculate moments.
a. Write the resultant force of the
external loading in Cartesian vector
form.
b. Determine the
& direction
of the resultant moment of the
external loading about A.
15 cm
18 cm
2.2 N-m
B
50 N
45°
10 cm
48 N.m
250 N
60 N
20
21
50 N
25 cm
100 N
A
118,
27cm 5, 4:1
Chapter 12 Solutions
EBK ENGINEERING MECHANICS
Ch. 12 - Initially, the car travels along a straight road...Ch. 12 - A ball is thrown vertically upward with a speed of...Ch. 12 - A particle travels along a straight line with a...Ch. 12 - A particle travels along a straight line with a...Ch. 12 - The position of the particle is given by s = (2t2 ...Ch. 12 - A particle travels along a straight line with an...Ch. 12 - A particle moves along a straight line such that...Ch. 12 - A particle travels along a straight line with a...Ch. 12 - Starting from rest, a particle moving in a...Ch. 12 - If a particle has an initial velocity of v0 = 12...
Ch. 12 - A particle travels along a straight line with a...Ch. 12 - A particle travels along a straight line with a...Ch. 12 - Prob. 5PCh. 12 - A particle is moving along a straight line such...Ch. 12 - A particle moves along a straight line with an...Ch. 12 - A particle travels along a straight-line path such...Ch. 12 - Tests reveal that a normal driver takes about 0.75...Ch. 12 - A particle is moving with a velocity of v0 when s...Ch. 12 - A particle is moving along a straight line with an...Ch. 12 - Car B is traveling a distanced ahead of car A....Ch. 12 - The velocity of a particle traveling along a...Ch. 12 - A freight train travels at v = 60(1 et) ft/s,...Ch. 12 - A particle is moving along a straight line such...Ch. 12 - If the effects of atmospheric resistance are...Ch. 12 - When a particle falls through the air, its initial...Ch. 12 - A sphere is fired downwards into a medium with an...Ch. 12 - Prob. 33PCh. 12 - Prob. 34PCh. 12 - A freight train starts from rest and travels with...Ch. 12 - Prob. 36PCh. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - An airplane starts from rest, travels 5000 ft down...Ch. 12 - The elevator starts from rest at the first floor...Ch. 12 - The motion of a jet plane just after landing on a...Ch. 12 - Prob. 44PCh. 12 - The vt graph for a particle moving through an...Ch. 12 - The a-s graph for a rocket moving along a straight...Ch. 12 - The jet car is originally traveling at a velocity...Ch. 12 - The v-t graph for a train has been experimentally...Ch. 12 - A motorcycle starts from rest at s = 0 and travels...Ch. 12 - A motorcycle starts from rest at s = 0 and travels...Ch. 12 - The v-t graph for the motion of a car as it moves...Ch. 12 - An airplane lands on the straight runway,...Ch. 12 - Starting from rest at s = 0, a boat travels in a...Ch. 12 - Starting from rest at s = 0, a boat travels in a...Ch. 12 - The speed of a train during the first minute has...Ch. 12 - A man riding upward in a freight elevator...Ch. 12 - Two cars start from rest side by side and travel...Ch. 12 - If the position of a particle is defined as s =...Ch. 12 - The jet plane starts from rest at s = 0 and is...Ch. 12 - Prob. 67PCh. 12 - Prob. 15FPCh. 12 - Prob. 16FPCh. 12 - A particle is constrained to travel along the...Ch. 12 - Prob. 18FPCh. 12 - A particle is traveling along the parabolic path y...Ch. 12 - Prob. 20FPCh. 12 - The ball is kicked from point A with the initial...Ch. 12 - The ball is kicked from point A with the initial...Ch. 12 - Prob. 23FPCh. 12 - Prob. 24FPCh. 12 - A ball is thrown from A. If it is required to...Ch. 12 - Prob. 26FPCh. 12 - If the velocity of a particle is defined as v(t) =...Ch. 12 - The velocity of a particle is v= {3i + (6 2t)j}...Ch. 12 - A particle, originally at rest and located at...Ch. 12 - The velocity of a particle is given by v ={16t2 i...Ch. 12 - The water sprinkler, positioned at the base of a...Ch. 12 - Prob. 74PCh. 12 - Prob. 75PCh. 12 - A particle travels along the curve from A to B in...Ch. 12 - The position of a crate sliding down a ramp is...Ch. 12 - A rocket is fired from rest at x = 0 and travels...Ch. 12 - The particle travels along the path defined by the...Ch. 12 - The motorcycle travels with constant speed v0...Ch. 12 - A particle travels along the curve from A to B in...Ch. 12 - The roller coaster car travels down the helical...Ch. 12 - Pegs A and B are restricted to move in the...Ch. 12 - The van travels over the hill described by y =...Ch. 12 - The flight path of the helicopter as it takes off...Ch. 12 - Determine the minimum initial velocity v0 and the...Ch. 12 - The catapult is used to launch a ball such that it...Ch. 12 - Neglecting the size of the ball, determine the...Ch. 12 - The girl at A can throw a ball at vA = 10 m/s....Ch. 12 - Show that the girl at A can throw the ball to the...Ch. 12 - The ball at A is kicked with a speed vA, = 80ft/s...Ch. 12 - The ball at A is kicked such that A = 30. If it...Ch. 12 - A golf ball is struck with a velocity of 80 ft/s...Ch. 12 - A golf ball is struck with a velocity of 80 ft/s...Ch. 12 - The basketball passed through the hoop even...Ch. 12 - It is observed that the skier leaves the ramp A at...Ch. 12 - It is observed that the skier leaves the ramp A at...Ch. 12 - Determine the horizontal velocity vA of a tennis...Ch. 12 - The missile at A takes off from rest and rises...Ch. 12 - The projectile is launched with a velocity v0....Ch. 12 - Prob. 101PCh. 12 - Prob. 102PCh. 12 - If the dart is thrown with a speed of 10 m/s,...Ch. 12 - Prob. 104PCh. 12 - Prob. 105PCh. 12 - Prob. 106PCh. 12 - Prob. 107PCh. 12 - Prob. 108PCh. 12 - The catapult is used to launch a ball such that it...Ch. 12 - Prob. 27FPCh. 12 - Prob. 28FPCh. 12 - Prob. 29FPCh. 12 - Prob. 30FPCh. 12 - Prob. 31FPCh. 12 - Prob. 32FPCh. 12 - The position of a particle is defined by r = {4(t ...Ch. 12 - The automobile has a speed of 80 ft/s at point A...Ch. 12 - The satellite S travels around the earth in a...Ch. 12 - The car passes point A with a speed of 25 m/s...Ch. 12 - Prob. 122PCh. 12 - Prob. 127PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - A boat is traveling along a circular path having a...Ch. 12 - Prob. 132PCh. 12 - Prob. 133PCh. 12 - Prob. 134PCh. 12 - When t = 0, the train has a speed of 8 m/s, which...Ch. 12 - The ball is ejected horizontally from the tube...Ch. 12 - The race car has an initial speed vA = 15 m/s at...Ch. 12 - Particles A and B are traveling counter-clockwise...Ch. 12 - Prob. 146PCh. 12 - Prob. 149PCh. 12 - The train passes point A with a speed of 30 m/s...Ch. 12 - The particle travels with a constant speed of 300...Ch. 12 - Prob. 152PCh. 12 - If the speed of the crate at A is 15 ft/s, which...Ch. 12 - The car has a speed of 55 ft/s. Determine the...Ch. 12 - The platform is rotating about the vertical axis...Ch. 12 - Peg P is driven by the fork link OA along the...Ch. 12 - Prob. 36FPCh. 12 - Prob. 37FPCh. 12 - Prob. 38FPCh. 12 - An airplane is flying in a straight line with a...Ch. 12 - The small washer is sliding down the cord OA. When...Ch. 12 - If a particle moves along a path such that r = (2...Ch. 12 - Prob. 162PCh. 12 - The time rate of change of acceleration is...Ch. 12 - A particle moves in the x y plane such that its...Ch. 12 - At the instant shown, the man is twirling a hose...Ch. 12 - The rod OA rotates clockwise with a constant...Ch. 12 - Determine the magnitude of the acceleration of the...Ch. 12 - The rod OA rotates counterclockwise with a...Ch. 12 - Determine the magnitude of the acceleration of the...Ch. 12 - Prob. 189PCh. 12 - Determine the velocity of block D if end A of the...Ch. 12 - Prob. 40FPCh. 12 - Prob. 41FPCh. 12 - Prob. 42FPCh. 12 - Prob. 43FPCh. 12 - Prob. 44FPCh. 12 - If the end of the cable at A is pulled down with a...Ch. 12 - The motor at C pulls in the cable with an...Ch. 12 - Determine the displacement of the log if the truck...Ch. 12 - Determine the constant speed at which the cable at...Ch. 12 - Starting from rest, the cable can be wound onto...Ch. 12 - If the end A of the cable is moving at vA = 3 m/s,...Ch. 12 - Determine the time needed for the load at B to...Ch. 12 - The cable at A is being drawn toward the motor at...Ch. 12 - Determine the speed of the block at B.Ch. 12 - The roller at A is moving with a velocity of A = 4...Ch. 12 - Prob. 213PCh. 12 - At the instant shown, the car at A is traveling at...Ch. 12 - The motor draws in the cord at B with an...Ch. 12 - If block B is moving down with a velocity vB and...Ch. 12 - Two planes, A and B, are flying at the same...Ch. 12 - Prob. 219PCh. 12 - The boat can travel with a speed of 16 km/h in...Ch. 12 - Two boats leave the pier P at the same time and...Ch. 12 - Prob. 222PCh. 12 - At the instant shown, car A has a speed of 20...Ch. 12 - Cars A and B are traveling around the circular...Ch. 12 - At the instant shown, cars A and B are traveling...Ch. 12 - Prob. 228PCh. 12 - Prob. 230PCh. 12 - Prob. 232PCh. 12 - Prob. 1RPCh. 12 - Prob. 2RPCh. 12 - Prob. 3RPCh. 12 - Prob. 4RPCh. 12 - Prob. 5RPCh. 12 - Prob. 6RPCh. 12 - Prob. 7RPCh. 12 - Prob. 8RPCh. 12 - Prob. 9RPCh. 12 - Prob. 10RPCh. 12 - Prob. 11RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 2-mass system shown below depicts a disk which rotates about its center and has rotational moment of inertia Jo and radius r. The angular displacement of the disk is given by 0. The spring with constant k₂ is attached to the disk at a distance from the center. The mass m has linear displacement & and is subject to an external force u. When the system is at equilibrium, the spring forces due to k₁ and k₂ are zero. Neglect gravity and aerodynamic drag in this problem. You may assume the small angle approximation which implies (i) that the springs and dampers remain in their horizontal / vertical configurations and (ii) that the linear displacement d of a point on the edge of the disk can be approximated by d≈re. Ө K2 www m 4 Cz 777777 Jo Make the following assumptions when analyzing the forces and torques: тв 2 0>0, 0>0, x> > 0, >0 Derive the differential equations of motion for this dynamic system. Start by sketching LARGE and carefully drawn free-body-diagrams for the disk and the…arrow_forwardA linear system is one that satisfies the principle of superposition. In other words, if an input u₁ yields the output y₁, and an input u2 yields the output y2, the system is said to be linear if a com- bination of the inputs u = u₁ + u2 yield the sum of the outputs y = y1 + y2. Using this fact, determine the output y(t) of the following linear system: given the input: P(s) = = Y(s) U(s) = s+1 s+10 u(t) = e−2+ sin(t) =earrow_forwardThe manometer fluid in the figure given below is mercury where D = 3 in and h = 1 in. Estimate the volume flow in the tube (ft3/s) if the flowing fluid is gasoline at 20°C and 1 atm. The density of mercury and gasoline are 26.34 slug/ft3 and 1.32 slug/ft3 respectively. The gravitational force is 32.2 ft/s2.arrow_forward
- Using the Bernoulli equation to find the general solution. If an initial condition is given, find the particular solution. y' + xy = xy¯¹, y(0) = 3arrow_forwardTest for exactness. If exact, solve. If not, use an integrating factor as given or obtained by inspection or by the theorems in the text. a. 2xydx+x²dy = 0 b. (x2+y2)dx-2xydy = 0 c. 6xydx+5(y + x2)dy = 0arrow_forwardNewton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forward
- Solve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward= MMB 241 Tutorial 3.pdf 2/6 90% + + 5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in seconds. Determine the magnitude of its acceleration when t = 10 s. 40 m v = 0.0625² 6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25 m/s, determine the magnitude of its acceleration when it passes point B. .A 90° 300 m n B 2arrow_forward= MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forward
- The population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward= MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward= MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY