The arrangement of the given bonds from the least polar to the most polar bond is to be stated. Concept Introduction: The chemical bond that exists between two atoms in which electrons are distributed in an unequal amount is known as polar bond. Due to this unequal distribution of electrons, the molecule will possess the dipole moment in which one end will have partial positive charge and other end will have partial negative charge. The ability that is possessed by an atom to attract the bonding pair of electrons towards itself is known as electronegativity. The electronegativity decreases while going down the group and increases while moving from left to right in the period.
The arrangement of the given bonds from the least polar to the most polar bond is to be stated. Concept Introduction: The chemical bond that exists between two atoms in which electrons are distributed in an unequal amount is known as polar bond. Due to this unequal distribution of electrons, the molecule will possess the dipole moment in which one end will have partial positive charge and other end will have partial negative charge. The ability that is possessed by an atom to attract the bonding pair of electrons towards itself is known as electronegativity. The electronegativity decreases while going down the group and increases while moving from left to right in the period.
Solution Summary: The author explains the arrangement of the given bonds from the least polar to the most-polar bond. The electronegativity decreases while going down the group and increases while moving from left to right.
Definition Definition Connection between particles in a compound. Chemical bonds are the forces that hold the particles of a compound together. The stability of a chemical compound greatly depends on the nature and strength of the chemical bonding present in it. As the strength of the chemical bonding increases the stability of the compound also increases.
Chapter 12, Problem 92AP
Interpretation Introduction
Interpretation:
The arrangement of the given bonds from the least polar to the most polar bond is to be stated.
Concept Introduction:
The chemical bond that exists between two atoms in which electrons are distributed in an unequal amount is known as polar bond. Due to this unequal distribution of electrons, the molecule will possess the dipole moment in which one end will have partial positive charge and other end will have partial negative charge.
The ability that is possessed by an atom to attract the bonding pair of electrons towards itself is known as electronegativity. The electronegativity decreases while going down the group and increases while moving from left to right in the period.
Reagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4-
1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of
solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution.
Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan
could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of
the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because
they will be used to calibrate the atomic absorption spectrometer.
Table 1: Dilutions of Zinc Solutions
Solution
Zinc Solution
Volume
Diluted Solution
Concentration
used
volume
(ppm Zn)
(mL)
(mL)
concentration
(ppm Zn)
Solution
concentration
A
1000
5.00
50.00
1.00×10²
(ppm
Zn(NO3)2)
2.90×10²
Solution
concentration
(M Zn(NO3)2
1.53×10-3
B
Solution A 5.00
100.00
5.00
C
Solution B 5.00 50.00
0.50
7.65×10-6
D
Solution B 10.00 50.00…
Chapter 12 Solutions
Student Solutions Manual for Zumdahl/DeCoste's Introductory Chemistry: A Foundation, 9th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell