BASIC BIOMECHANICS
8th Edition
ISBN: 9781259913877
Author: Hall
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 8AP
(a)
Summary Introduction
To determine: The performer’s maximum kinetic energy.
(b)
Summary Introduction
To determine: The performer’s maximum potential energy.
(c)
Summary Introduction
To determine: The performer’s minimum kinetic energy.
(c)
Summary Introduction
To determine: The elevation of performer’s center of mass.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
List the three types of van der Waals forces in decreasing order of strength.
2
ney:
Load (L) = 5 kgs
= Effort
E = Fulcrum
Weight of forearm = 1.8 kgs
L = Load
Biceps brachii
muscle
Distance of load from elbow joint = 35 cm
%3D
Effort (E) = contraction
of biceps brachii
Distance of center of mass of forearm from elbow = 17 cm
Distance of tendon from elbow = 4 cm
A) Draw the free-body diagram to represent the forces and moments
Load (L) = weight of
object plus forearm
B) Write the torque equation for static equilibrium
Fulcrum (F) = elbow joint
Chapter 12 Solutions
BASIC BIOMECHANICS
Ch. 12 - How much force must be applied by a kicker to give...Ch. 12 - A high jumper with a body weight of 712 N exerts a...Ch. 12 - What factors affect the magnitude of friction?Ch. 12 - If s between a basketball shoe and a court is...Ch. 12 - A football player pushes a 670-N blocking sled....Ch. 12 - Lineman A has a mass of 100 kg and is traveling...Ch. 12 - Prob. 7IPCh. 12 - A ball dropped on a surface from a 2-m height...Ch. 12 - A set of 20 stairs, each of 20-cm height, is...Ch. 12 - A pitched ball with a mass of 1 kg reaches a...
Ch. 12 - Identify three practical examples of each of...Ch. 12 - Prob. 2APCh. 12 - A 2-kg block sitting on a horizontal surface is...Ch. 12 - Explain the interrelationships among mechanical...Ch. 12 - Prob. 5APCh. 12 - A 108 cm, 0.73-kg golf club is swung for 0.5 s...Ch. 12 - A 6.5-N ball is thrown with an initial velocity of...Ch. 12 - Prob. 8APCh. 12 - Using the principle of conservation of mechanical...Ch. 12 - Prob. 10AP
Knowledge Booster
Similar questions
- Suppose as astronaut has landed on Mars. Fully equipped, the astronaut has a mass of 130 kg, and when the astronaut gets in scale, the reading is 477 N. What is the acceleration due to gravity on Mars?arrow_forwardWhich one of the following is key element to overall athletic performance? Select one: a. Increase available lactic acid to increase neural sensitivity. O b. Building up inorganic phosphate depos above 10 mM levels to increase muscle contractibility c. To maximize energy use without reaching the limitations of any of the energy supply systems. O d. Minimize tissue hydration in order to maximize osmolality of tissue.arrow_forwardDefine synergistic effectarrow_forward
- What false about Henneman's size principle? Select one: a. The relative change in force remains relatively constant b. Minimizes the amount of fatigue C. Motor units are recruited from smallest to largest d. Low force recruited first e. Fast twitch recruited firstarrow_forwardUse the following information to answer questions 20 and 21. Assignment Booklet 4B Two cars, each with a mass of 1000 kg, are travelling in opposíte directionsn is car travelling to the right is travelling 30 m/s, and the car travelling to the lert is travelling 20 m/s. 1000 kg 30 m/s 1000 kg 20 m/s 20. What is the total momentum of the vehicles after they collicde? A. -50 000 kg-m/s B. 50 000 kg.m/s C. -10 000 kg.m/s D. 10 000 kg.m/s al ne 21. If the two vehicles collide and lock together, what is their velocity after the collision? A. -5 m/s Aon s quAua B. 5 m/s elg C. -10 m/s D. 10 m/s Return to page 70 of the Student Module Booklet and begin the Section 3 Review. os elomun ef et birov ort to solniedarrow_forwardAccording to Jean Buridan’s equation, the momentum or “impetus” of an 8 kilogram mass moving at 48 meters per second would be: 192 kilogram-meters per second 384 kilogram-meters per second 576 kilogram-meters per second 768 kilogram-meters per second 960 kilogram-meters per secondarrow_forward
- 2. We discussed how muscle spindles allow for precision of movement as a muscle lengthens, and particular muscles which require more precise movements will contain more spindles. In addition to this precision control over muscle length, there are other differences between muscles which enable more precision in how much force is generated. Consider the two graphs below which depict force generated by two different muscles as additional motor units are recruited. Force Muscle A Load Force Muscle B Load a) Describe why the first steps for a low force contraction in both muscles are smaller than the later ones in the context of motor units and force production.arrow_forwardA scientist was investigating if differences in the frictional work performed on a model car can change depending on its mass (in grams) and whether the car moves up or down an inclined plane. They decided to measure the amount of frictional force experienced by the model car and the distance it traveled in meters. The scientists were able to evaluate the frictional work using the following data. Mass (g) Distance (m) Force Work Done by Friction (J) car going up the incline 100 39 0.063 2.457 car going down the incline 70 39 0.2309 ? It is known that the relationship between force and distance determines the work done by friction (W+). W₁ = fd Wf work done by friction f = force d = distance Question: How much work done by friction was exerted on the car as it moved down the inclined plane? You may use a calculator. 1 2.457 9.005 11.46 16.16 PREVIOUS FINISHarrow_forwardIf a person has a vertical force of 10.25N with a nylon strap of a 2.5cm of width and length of 10cm in the trapezius muscle, how much time does the person need to feel pain in the muscle? How much time is needed to injure or damage the muscle? Must show every mathematical process.arrow_forward
- Nonearrow_forwardBased on the acceleration in the above ball rolling down an inclined plane (with vo = 0 meters per second), how far would it have traveled along the inclined plane in the first six seconds of rolling? 9 meters 16 meters 25 meters 36 meters 49 metersarrow_forwardConstruct a graph for Experiment 1 to compare how variable forces affected the subject’s EMG. Plot the results from both forearms (dominant versus non-dominant) on the same graph. Include a full caption for the graph.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Basic BiomechanicsBioengineeringISBN:9780073522760Author:Susan J HallPublisher:McGraw-Hill Education
Basic Biomechanics
Bioengineering
ISBN:9780073522760
Author:Susan J Hall
Publisher:McGraw-Hill Education