BASIC BIOMECHANICS
BASIC BIOMECHANICS
8th Edition
ISBN: 9781259913877
Author: Hall
Publisher: RENT MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 4IP

If μs between a basketball shoe and a court is 0.56, and the normal reaction force acting on the shoe is 350 N, how much horizontal force is required to cause the shoe to slide? (Answer: >196 N)

Blurred answer
Students have asked these similar questions
If a person has a vertical force of 10.25N with a nylon strap of a 2.5cm of width and length of 10cm in the trapezius muscle, how much time does the person need to feel pain in the muscle? How much time is needed to injure or damage the muscle? Must show every mathematical process.
A scientist was investigating if differences in the frictional work performed on a model car can change depending on its mass (in grams) and whether the car moves up or down an inclined plane. They decided to measure the amount of frictional force experienced by the model car and the distance it traveled in meters. The scientists were able to evaluate the frictional work using the following data. Mass (g) Distance (m) Force Work Done by Friction (J) car going up the incline 100 39 0.063 2.457 car going down the incline 70 39 0.2309 ? It is known that the relationship between force and distance determines the work done by friction (W+). W₁ = fd Wf work done by friction f = force d = distance Question: How much work done by friction was exerted on the car as it moved down the inclined plane? You may use a calculator. 1 2.457 9.005 11.46 16.16 PREVIOUS FINISH
2. a) Label the system provided below, including the reference frame, moment arms and vector forces with the information provided. Internal moment arm = 4cm +0.04m External moment arm relative to the segment weight = 25cm 0.25m External moment arm relative to the load weight = 45cm 40.45m Segment weight = 50 N Load weight = 100 N Lower leg segment angle relative to horizontal plane = 45° Quadriceps tendon angle = 45° Axis of rotation MF SW LW 2b) Using the figure in 2a., calculate the external torque of the system relative to the normal component of segment and load weights listed above. 2c) Calculate the amount of both the tangential component of the muscle force and the muscle force itself required to keep this system in a state of static equilibrium.
Knowledge Booster
Background pattern image
Bioengineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, bioengineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biomedical Instrumentation Systems
Chemistry
ISBN:9781133478294
Author:Chatterjee
Publisher:Cengage
Text book image
Curren'S Math For Meds: Dosages & Sol
Nursing
ISBN:9781305143531
Author:CURREN
Publisher:Cengage
Text book image
Principles Of Pharmacology Med Assist
Biology
ISBN:9781337512442
Author:RICE
Publisher:Cengage
Text book image
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license