The decomposition of NH 3 to N 2 and H 2 was studied on two surfaces: Surface E a (kJ/mol) W 163 Os 197 Without a catalyst, the activation energy is 335 kJ/mol. a. Which surface is the better heterogeneous catalyst for the decomposition of NH 3 ? Why? b. How many times faster is the reaction at 298 K on the W surface compared with the reaction with no catalyst present? Assume that the frequency factor A is the same for each reaction. c. The decomposition reaction on the two surfaces obeys a rate law of the form Rate = k [ NH 3 ] [ H 2 ] How can you explain the inverse dependence of the rate on the H 2 concentration?
The decomposition of NH 3 to N 2 and H 2 was studied on two surfaces: Surface E a (kJ/mol) W 163 Os 197 Without a catalyst, the activation energy is 335 kJ/mol. a. Which surface is the better heterogeneous catalyst for the decomposition of NH 3 ? Why? b. How many times faster is the reaction at 298 K on the W surface compared with the reaction with no catalyst present? Assume that the frequency factor A is the same for each reaction. c. The decomposition reaction on the two surfaces obeys a rate law of the form Rate = k [ NH 3 ] [ H 2 ] How can you explain the inverse dependence of the rate on the H 2 concentration?
Solution Summary: The author explains that the substance that speeds up the rate of reaction without getting consumed itself in a chemical reaction is known as catalyst.
The decomposition of NH3 to N2 and H2 was studied on two surfaces:
Surface
Ea (kJ/mol)
W
163
Os
197
Without a catalyst, the activation energy is 335 kJ/mol.
a. Which surface is the better heterogeneous catalyst for the decomposition of NH3? Why?
b. How many times faster is the reaction at 298 K on the W surface compared with the reaction with no catalyst present? Assume that the frequency factor A is the same for each reaction.
c. The decomposition reaction on the two surfaces obeys a rate law of the form
Rate
=
k
[
NH
3
]
[
H
2
]
How can you explain the inverse dependence of the rate on the H2 concentration?
Bookmarks
Profiles Tab Window Help
Chemical Formula - Aktiv Che X
+
→ C
11
a
app.aktiv.com
Google Chrome isn't your default browser Set as default
Question 12 of 16
Q Fri Feb 2
Verify it's you
New Chrome availabl-
Write the balanced molecular chemical equation for the reaction in aqueous solution for
mercury(I) nitrate and chromium(VI) sulfate. If no reaction occurs, simply write only NR. Be
sure to include the proper phases for all species within the reaction.
3 Hg(NO3)2(aq) + Cг2(SO4)3(aq) → 3 Hg₂SO (s) + 2 Cr(NO3), (aq)
ean Ui
mate co
ence an
climate
bility inc
ulnerabili
women,
main critic
CLIMATE-INI
ernational
+
10
O
2
W
FEB
1
+
4-
3-
2-
2
2
(
3
4
NS
28
2
ty
56
+
2+
3+
4+
7
8
9 0
5
(s)
(1)
Ch
O
8
9
(g) (aq)
Hg
NR
CI
Cr
x H₂O
A
80
Q
A
DII
A
F2
F3
FA
F5
F6
F7
F8
F9
#3
EA
$
do 50
%
6
CO
&
7
E
R
T
Y
U
8
(
9
0
F10
34
F11
川
F12
Subr
+
delete
0
{
P
}
Deducing the reactants of a Diels-Alder reaction
n the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one
step, by moderately heating the reactants?
?
Δ
• If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any
arrangement you like.
• If your answer is no, check the box under the drawing area instead.
Explanation Check
Click and drag to start drawing a structure.
>
Predict the major products of the following organic reaction:
+
Some important notes:
A
?
• Draw the major product, or products, of the reaction in the drawing area below.
• If there aren't any products, because no reaction will take place, check the box below the drawing area instead.
• Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are
enantiomers.
Explanation
Check
Click and drag to start drawing a structure.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell