Exercises 31-50 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable, b. Keeping the restrictions in mind, solve the equation . 1 x − 4 − 5 x + 2 = 6 x 2 − 2 x − 8
Exercises 31-50 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable, b. Keeping the restrictions in mind, solve the equation . 1 x − 4 − 5 x + 2 = 6 x 2 − 2 x − 8
Exercises 31-50 contain rational equations with variables in denominators. For each equation,a.write the value or values of the variable that make a denominator zero. These are the restrictions on the variable,b.Keeping the restrictions in mind, solve the equation.
Assume {u1, U2, u3, u4} does not span R³.
Select the best statement.
A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set.
B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³.
C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set.
D. {u1, U2, u3} cannot span R³.
E. {U1, U2, u3} spans R³ if u̸4 is the zero vector.
F. none of the above
Select the best statement.
A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors
are distinct.
n
B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0
excluded spans Rª.
○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n
vectors.
○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors
spans Rn.
E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn.
F. none of the above
Assume {u1, U2, u3, u4} does not span R³.
Select the best statement.
A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set.
B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³.
C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set.
D. {u1, U2, u3} cannot span R³.
E. {U1, U2, u3} spans R³ if u̸4 is the zero vector.
F. none of the above
Chapter 1 Solutions
Algebra And Trigonometry 6th. Edition Annotated Instructor's Copy Blitzer
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.