The graph of exercise 45 is to be considered to answer the question. The concentration of A is to be calculated for the given time. The first three half-lives is to be calculated for this experiment. Concept introduction: The change observed in the concentration of a reactant or a product per unit time is known as the rate of the particular reaction. The differential rate law provides the rate of a reaction at specific reaction concentrations. To determine : The concentration of A after 9 s .
The graph of exercise 45 is to be considered to answer the question. The concentration of A is to be calculated for the given time. The first three half-lives is to be calculated for this experiment. Concept introduction: The change observed in the concentration of a reactant or a product per unit time is known as the rate of the particular reaction. The differential rate law provides the rate of a reaction at specific reaction concentrations. To determine : The concentration of A after 9 s .
Interpretation: The graph of exercise
45 is to be considered to answer the question. The concentration of
A is to be calculated for the given time. The first three half-lives is to be calculated for this experiment.
Concept introduction: The change observed in the concentration of a reactant or a product per unit time is known as the rate of the particular reaction. The differential rate law provides the rate of a reaction at specific reaction concentrations.
To determine: The concentration of
A after
9s.
(b)
Interpretation Introduction
Interpretation: The graph of exercise
45 is to be considered to answer the question. The concentration of
A is to be calculated for the given time. The first three half-lives is to be calculated for this experiment.
Concept introduction: The change observed in the concentration of a reactant or a product per unit time is known as the rate of the particular reaction. The differential rate law provides the rate of a reaction at specific reaction concentrations.
To determine: The first three half lives of the given experiment.
What are the IUPAC Names of all the compounds in the picture?
1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following
compounds. Please show your work. (8) SF2, CH,OH, C₂H₂
b) Based on your answers given above, list the compounds in order of their Boiling Point
from low to high. (8)
19.78 Write the products of the following sequences of reactions. Refer to your reaction road-
maps to see how the combined reactions allow you to "navigate" between the different
functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18
roadmaps along with your new Chapter 19 roadmap for these.
(a)
1. BHS
2. H₂O₂
3. H₂CrO4
4. SOCI₂
(b)
1. Cl₂/hv
2. KOLBU
3. H₂O, catalytic H₂SO4
4. H₂CrO4
Reaction
Roadmap
An alkene 5. EtOH
6.0.5 Equiv. NaOEt/EtOH
7. Mild H₂O
An alkane
1.0
2. (CH3)₂S
3. H₂CrO
(d)
(c)
4. Excess EtOH, catalytic H₂SO
OH
4. Mild H₂O*
5.0.5 Equiv. NaOEt/EtOH
An alkene 6. Mild H₂O*
A carboxylic
acid
7. Mild H₂O*
1. SOC₁₂
2. EtOH
3.0.5 Equiv. NaOEt/E:OH
5.1.0 Equiv. NaOEt
6.
NH₂
(e)
1. 0.5 Equiv. NaOEt/EtOH
2. Mild H₂O*
Br
(f)
i
H
An aldehyde
1. Catalytic NaOE/EtOH
2. H₂O*, heat
3. (CH,CH₂)₂Culi
4. Mild H₂O*
5.1.0 Equiv. LDA
Br
An ester
4. NaOH, H₂O
5. Mild H₂O*
6. Heat
7.
MgBr
8. Mild H₂O*
7. Mild H₂O+