EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 3PCE
A communications satellite with a mass of 520 kg is in a circular orbit about the Earth. The radius of the orbit is 35,000 km as measured from the center of the Earth. Calculate (a) the weight of the satellite on the surface of the Earth and (b) the gravitational force exerted on the orbiting satellite by the Earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The International Space Station has a mass of 4.19 x 105 kg and orbits at a radius of 6.79 × 106 m from the center of
Earth. Find the gravitational force exerted by Earth on the space station, the space station's gravitational potential energy,
and the weight of an 86.8 kg astronaut living inside the station.
HINT
(a) the gravitational force (in N) exerted by Earth on the space station (Enter the magnitude.)
N
(b) the space station's gravitational potential energy (in J)
J
(c) the weight (in N) of an 86.8 kg astronaut living inside the station
N
A satellite of mass m= 100 kg is in a circular orbit at
a height h = R above the surface of the earth where R
is the radius of the earth. Find
(a) the acceleration due to gravity at any point on
the path of the satellite,
(b) the gravitational force on the satellite and
(c) the centripetal force on the satellite.
The International Space Station has a mass of 4.19 ✕ 105 kg and orbits at a radius of 6.79 ✕ 106 m from the center of Earth. Find the gravitational force exerted by Earth on the space station, the space station's gravitational potential energy, and the weight of an 84.3 kg astronaut living inside the station.
(a)the gravitational force (in N) exerted by Earth on the space station (Enter the magnitude.)
N
(b)the space station's gravitational potential energy (in J)
J
(c)the weight (in N) of an 84.3 kg astronaut living inside the station
N
Chapter 12 Solutions
EBK PHYSICS
Ch. 12.1 - Rank the four systems shown in Figure 12-6 in...Ch. 12.2 - Suppose the Sun suddenly collapsed to half its...Ch. 12.3 - Satellite A orbits the Earth at the radius r,...Ch. 12.4 - Prob. 4EYUCh. 12.5 - Prob. 5EYUCh. 12.6 - If the radius of the Moons orbit around the Earth...Ch. 12 - It is often said that astronauts in orbit...Ch. 12 - When a person passes you on the street, you do not...Ch. 12 - Imagine bringing the tips of your index fingers...Ch. 12 - Does the radius vector of Mars sweep out the same...
Ch. 12 - When a communications satellite is placed in a...Ch. 12 - The Mass of Pluto On June 22, 1978, James Christy...Ch. 12 - Rockets are launched into space from Cape...Ch. 12 - One day in the future you may take a pleasure...Ch. 12 - Apollo astronauts orbiting the Moon at low...Ch. 12 - Prob. 10CQCh. 12 - The force exerted by the Sun on the Moon is more...Ch. 12 - Prob. 12CQCh. 12 - System A has masses m and m separated by a...Ch. 12 - A 6.3-kg bowling ball and a 7.1-kg bowling ball...Ch. 12 - A communications satellite with a mass of 520 kg...Ch. 12 - The Attraction of Ceres Ceres, the largest...Ch. 12 - In one hand you hold a 0.13-kg apple, in the other...Ch. 12 - Predict/Calculate A spaceship of mass m travels...Ch. 12 - At new moon, the Earth, Moon, and Sun are in a...Ch. 12 - When the Earth, Moon, and Sun form a right...Ch. 12 - Repeat the previous problem, this time finding the...Ch. 12 - Predict/Calculate Three 7.25-kg masses are at the...Ch. 12 - Predict/Calculate Four masses are positioned at...Ch. 12 - Suppose that three astronomical objects (1, 2, and...Ch. 12 - Find the acceleration due to gravity on the...Ch. 12 - At what altitude above the Earths surface is the...Ch. 12 - Two 6.4-kg bowling balls, each with a radius of...Ch. 12 - What is the acceleration due to Earths gravity at...Ch. 12 - Extrasolar Planet Gravity Kepler-62e is an...Ch. 12 - Predict/Calculate At a certain distance from the...Ch. 12 - The acceleration due to gravity on the Moons...Ch. 12 - Gravitational Tug of War At some point along the...Ch. 12 - Predict/Calculate An Extraterrestrial Volcano...Ch. 12 - Consider an asteroid with a radius of 19 km and a...Ch. 12 - Prob. 23PCECh. 12 - Predict/Explain The Earth-Moon Distance Is...Ch. 12 - Apollo Missions On Apollo missions to the Moon,...Ch. 12 - Prob. 26PCECh. 12 - An Extrasolar Planet In July of 1999 a planet was...Ch. 12 - Phobos, one of the moons of Mars, orbits at a...Ch. 12 - Predict/Calculate An Asteroid with Its Own Moon...Ch. 12 - GPS Satellites GPS (Global Positioning System)...Ch. 12 - Predict/Calculate Two satellites orbit the Earth,...Ch. 12 - Predict/Calculate Satellite A has a mass of 1000...Ch. 12 - Predict/Calculate The Martian moon Deimos has an...Ch. 12 - Predict/Calculate (a) Calculate the orbital period...Ch. 12 - Binary Stars Alpha Centauri A and Alpha Centauri B...Ch. 12 - Prob. 36PCECh. 12 - How much gravitational potential energy is...Ch. 12 - Predict/Explain (a) Is the amount of energy...Ch. 12 - Prob. 39PCECh. 12 - Calculate the gravitational potential energy of a...Ch. 12 - Prob. 41PCECh. 12 - Two 0.59-kg basketballs, each with a radius of 12...Ch. 12 - Find the minimum kinetic energy needed for a...Ch. 12 - Predict/Explain Suppose the Earth were to suddenly...Ch. 12 - Prob. 45PCECh. 12 - Prob. 46PCECh. 12 - Meteorites from Mars Several meteorites found in...Ch. 12 - What is the launch speed of a projectile that...Ch. 12 - A projectile launched vertically from the surface...Ch. 12 - Prob. 50PCECh. 12 - Predict/Calculate Halleys Comet Halleys comet,...Ch. 12 - The End of the Lunar Module On Apollo Moon...Ch. 12 - Prob. 53PCECh. 12 - Prob. 54PCECh. 12 - A projectile is launched vertically from the...Ch. 12 - Prob. 56PCECh. 12 - Predict/Calculate Two baseballs, each with a mass...Ch. 12 - On Earth, a person can jump vertically and rise to...Ch. 12 - The magnitude of the tidal force exerted on a...Ch. 12 - The magnitude of the tidal force between the...Ch. 12 - A dumbbell has a mass m on either end of a rod of...Ch. 12 - Prob. 62PCECh. 12 - CE You weigh yourself on a scale inside an...Ch. 12 - Figure 12-37 Problems 64 and 65 64. CE Rank...Ch. 12 - CE Referring to Figure 12-37, rank objects A, B,...Ch. 12 - CE The Crash of Skylab Skylab, the largest...Ch. 12 - Consider a system consisting of three masses on...Ch. 12 - An astronaut exploring a distant solar system...Ch. 12 - Predict/Calculate When the Moon is in its...Ch. 12 - Prob. 70GPCh. 12 - Suppose that each of the three masses in Figure...Ch. 12 - A Near Miss! In the early morning hours of June...Ch. 12 - Predict/Calculate Suppose a planet is discovered...Ch. 12 - Prob. 74GPCh. 12 - Walking into Orbit A spherical asteroid of average...Ch. 12 - Prob. 76GPCh. 12 - Find the orbital period of the binary star system...Ch. 12 - Exploring Mars In the not-too-distant future...Ch. 12 - Comet Wild 2 In 2004, a NASA spacecraft named...Ch. 12 - Predict/Calculate (a) If you want to launch a...Ch. 12 - Predict/Calculate A satellite is placed in Earth...Ch. 12 - Show that the force of gravity between the Moon...Ch. 12 - The astronomical unit AU is defined as the mean...Ch. 12 - Prob. 84GPCh. 12 - Predict/Calculate Space Station Orbit The...Ch. 12 - Approaching the ISS A Russian Soyuz module, with...Ch. 12 - Prob. 87GPCh. 12 - Prob. 88GPCh. 12 - Three identical stars, at the vertices of an...Ch. 12 - Prob. 90GPCh. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - Predict/Calculate Referring to Example 12-8...Ch. 12 - Predict/Calculate Referring to Example 12-17 (a)...Ch. 12 - Predict/Calculate Referring to Example 12-17...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 1. _____ Biofilms of microorganisms form in aquatic environments only.
Microbiology with Diseases by Body System (5th Edition)
Compare the roles of CO2 and H2O in cellular respiration and photosynthesis.
Campbell Biology (11th Edition)
Match the following cell types with their correct definition. _________Macrophage _________NK cell _________Eos...
Human Anatomy & Physiology (2nd Edition)
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
Draw the mechanism for the reaction of cyclohexene with HCl.
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardEstimate the gravitational force between two sumo wrestlers, with masses 220 kg and 240 kg, when they are embraced and their centers are 1.2 m apart.arrow_forward
- Let gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forward
- A point mass m is located a distance D from the nearest end of a thin rod of mass M and length L along the axis of the rod. Find the gravitational force exerted on the point mass by the rod.arrow_forwardThe gravitational force exerted on an astronaut on the Earths surface is 650 N directed downward. When she is in the space station in orbit around the Earth, is the gravitational force on her (a) larger, (b) exactly the same, (c) smaller, (d) nearly but not exactly zero, or (e) exactly zero?arrow_forwardA satellite of mass 16.7 kg in geosynchronous orbit at an altitude of 3.58 104 km above the Earths surface remains above the same spot on the Earth. Assume its orbit is circular. Find the magnitude of the gravitational force exerted by the Earth on the satellite. Hint: The answer is not 163 N.arrow_forward
- A planet has two moons with identical mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2r. The magnitude of the gravitational force exerted by the planet on Moon 2 is (a) four times as large (b) twice as large (c) the same (d) half as large (e) one-fourth as large as the gravitational force exerted by the planet on Moon 1.arrow_forwardA geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are sueful for communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in the equatorial plane in the same direction as Earth’s rotation). Calculate the radius of such an orbit based on the data for Earth in Appendis D.arrow_forwardIf a spacecraft is headed for the outer solar system, it may require several gravitational slingshots with planets in the inner solar system. If a spacecraft undergoes a head-on slingshot with Venus as in Example 11.6, find the spacecrafts change in speed vS. Hint: Venuss orbital period is 1.94 107 s, and its average distance from the Sun is 1.08 1011 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY