
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.2, Problem 3CP
Calculate the square roots of the following numbers to eight correct decimal places by using Fixed-Point Iteration as in Example 1.6: (a) 3 (b) 5. State your initial guess and the number of steps needed.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need help explaining on this example on how can I define the Time-Domain Function, Apply the Laplace Transformation Formula, and Simplify to Find the Frequency-Domain Expression. I need to understand on finding Y(s)
1. A bicyclist is riding their bike along the Chicago Lakefront Trail. The velocity (in
feet per second) of the bicyclist is recorded below. Use (a) Simpson's Rule, and (b)
the Trapezoidal Rule to estimate the total distance the bicyclist traveled during the
8-second period.
t
0 2
4 6 8
V
10 15
12 10 16
2. Find the midpoint rule approximation for
(a) n = 4
+5
x²dx using n subintervals.
1° 2
(b) n = 8
36
32
28
36
32
28
24
24
20
20
16
16
12
8-
4
1
2
3
4
5
6
12
8
4
1
2
3
4
5
6
1. A Blue Whale's resting heart rate has period that happens to be approximately equal to 2π. A typical ECG of a whale's heartbeat
over one period may be approximated by the function,
f(x)
=
0.005x4
2
0.005x³-0.364x² + 1.27x
on the interval [0, 27]. Find an nth-order Fourier approximation to the Blue Whale's heartbeat, where n ≥ 3 is different from
that used in any other posts on this topic, to generate a periodic function that can be used to model its heartbeat, and graph your
result. Be sure to include your chosen value of n in your Subject Heading.
Chapter 1 Solutions
Numerical Analysis
Ch. 1.1 - Use the Intermediate Value Theorem to find an...Ch. 1.1 - Use the Intermediate Value Theorem to find an...Ch. 1.1 - Consider the equations in Exercise 1. Apply two...Ch. 1.1 - Consider the equations in Exercise 2. Apply two...Ch. 1.1 - Consider the equation x4=x3+10 . a. Find an...Ch. 1.1 - Suppose that the Bisection Method with starting...Ch. 1.1 - Prob. 1CPCh. 1.1 - Use the Bisection Method to find the root to eight...Ch. 1.1 - Use the Bisection Method to locate all solutions...Ch. 1.1 - Prob. 4CP
Ch. 1.1 - Prob. 5CPCh. 1.1 - Use the Bisection Method to calculate the solution...Ch. 1.1 - Use the Bisection Method to find the two real...Ch. 1.1 - The Hilbert matrix is the nn matrix whose ijth...Ch. 1.1 - Prob. 9CPCh. 1.1 - A planet orbiting the sun traverses an ellipse....Ch. 1.2 - Find all fixed points of the following gx . a. 3x...Ch. 1.2 - Find all fixed points of the following gx . x+63x2...Ch. 1.2 - Prob. 3ECh. 1.2 - Show that -1, 0, and 1 are fixed points of the...Ch. 1.2 - For which of the following gx is r=3 a fixed...Ch. 1.2 - For which of the following is a fixed...Ch. 1.2 - Use Theorem 1.6 to determine whether Fixed-Point...Ch. 1.2 - Use Theorem 1.6 to determine whether Fixed-Point...Ch. 1.2 - Find each fixed point and decide whether...Ch. 1.2 - Find each fixed point and decide whether...Ch. 1.2 - Express each equation as a fixed-point problem...Ch. 1.2 - Consider the Fixed-Point Iteration xgx=x20.24 ....Ch. 1.2 - (a) Find all fixed points of.
(b) To which of the...Ch. 1.2 - Which of the following three Fixed-Point...Ch. 1.2 - Which of the following three Fixed-Point...Ch. 1.2 - Which of the following three Fixed-Point...Ch. 1.2 - Check that and -1 are roots of. Isolate the term...Ch. 1.2 - Prove that the method of Example 1.6 will...Ch. 1.2 - Explore the idea of Example 1.6 for cube roots. Lf...Ch. 1.2 - Improve the cube root algorithm of Exercise 19 by...Ch. 1.2 - Prob. 21ECh. 1.2 - Prob. 22ECh. 1.2 - Assume that gx is continuously differentiable and...Ch. 1.2 - Assume that g is a continuously differentiable...Ch. 1.2 - Prob. 25ECh. 1.2 - Prove that a continuously differentiable function ...Ch. 1.2 - Prob. 27ECh. 1.2 - Prob. 28ECh. 1.2 - Prob. 29ECh. 1.2 - Prob. 30ECh. 1.2 - Prob. 31ECh. 1.2 - Find the set of all initial guesses for which the...Ch. 1.2 - Prob. 33ECh. 1.2 - Prob. 1CPCh. 1.2 - Prob. 2CPCh. 1.2 - Calculate the square roots of the following...Ch. 1.2 - Calculate the cube roots of the following numbers...Ch. 1.2 - Prob. 5CPCh. 1.2 - Prob. 6CPCh. 1.2 - Prob. 7CPCh. 1.3 - Find the forward and backward error for the...Ch. 1.3 - Find the forward and backward error for the...Ch. 1.3 - (a) Find the multiplicity of the root r=0 of...Ch. 1.3 - (a) Find the multiplicity of the root of.
(b)...Ch. 1.3 - Find the relation between forward and backward...Ch. 1.3 - Let be a positive integer. The equation defining...Ch. 1.3 - Let be the Wilkinson polynomial. (a) Prove that ...Ch. 1.3 - Let fx=xnaxn1 , and set gx=xn . (a) Use the...Ch. 1.3 - Prob. 1CPCh. 1.3 - Carry' out Computer Problem 1 for fx=sinx3x3 .Ch. 1.3 - Prob. 3CPCh. 1.3 - Prob. 4CPCh. 1.3 - Prob. 5CPCh. 1.3 - Prob. 6CPCh. 1.4 - Apply two steps of Newton’s Method with initial...Ch. 1.4 - Apply two steps of Newton’s Method with initial...Ch. 1.4 - Use Theorem 1.11 or 1.12 to estimate the error...Ch. 1.4 - Estimate
as in Exercise 3.
(a) ; ,
(b) ; ,
Ch. 1.4 - Consider the equation 8x412x3+6x2x=0 . For each of...Ch. 1.4 - Sketch a function f and initial guess for which...Ch. 1.4 - Let fx=x47x3+18x220x+8 . Does Newton’s Method...Ch. 1.4 - Prove that Newton’s Method applied to fx=ax+b...Ch. 1.4 - Show that applying Newton’s Method to fx=x2A...Ch. 1.4 - Find the Fixed-Point Iteration produced by...Ch. 1.4 - Use Newton’s Method to produce a quadratically...Ch. 1.4 - Suppose Newton’s Method is applied to the...Ch. 1.4 - (a) The function has a root at . If the error ...Ch. 1.4 - Let
denote the Newton’s Method iteration for the...Ch. 1.4 - Each equation has one root. Use Newton’s Method to...Ch. 1.4 - Prob. 2CPCh. 1.4 - Apply Newton’s Method to find the only root to as...Ch. 1.4 - Carry out the steps of Computer Problem 3 for (a)...Ch. 1.4 - Prob. 5CPCh. 1.4 - Prob. 6CPCh. 1.4 - Consider the function fx=esin3x+x62x4x31 on the...Ch. 1.4 - Prob. 8CPCh. 1.4 - Prob. 9CPCh. 1.4 - Set fx=54x6+45x5102x469x3+35x2+16x4 . Plot the...Ch. 1.4 - The ideal gas law for a gas at low temperature and...Ch. 1.4 - Prob. 12CPCh. 1.4 - Prob. 13CPCh. 1.4 - Prob. 14CPCh. 1.4 - Prob. 15CPCh. 1.4 - Prob. 16CPCh. 1.4 - Consider the national population growth model...Ch. 1.5 - Prob. 1ECh. 1.5 - Apply two steps of the Method of False Position...Ch. 1.5 - Apply two steps of Inverse Quadratic Interpolation...Ch. 1.5 - A commercial fisher wants to set the net at a...Ch. 1.5 - Prob. 5ECh. 1.5 - If the Secant Method converges to, , and , then...Ch. 1.5 - Consider the following four methods for...Ch. 1.5 - Prob. 1CPCh. 1.5 - Use the Method of False Position to find the...Ch. 1.5 - Prob. 3CPCh. 1.5 - Prob. 4CPCh. 1.5 - Prob. 5CPCh. 1.5 - Prob. 6CPCh. 1.5 - Write a MATLAB function file for f . The...Ch. 1.5 - Plot f on , . You may use the @ symbol as...Ch. 1.5 - Reproduce Figure 1.15. The MATLAB commands and...Ch. 1.5 - Solve the forward kinematics problem for the...Ch. 1.5 - Prob. 5SACh. 1.5 - Find a strut length p2 , with the rest of the...Ch. 1.5 - Calculate the intervals in p2 , with the rest of...Ch. 1.5 - Prob. 8SA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- I need help explaining on this example on how can I define the Time-Domain Function, Apply the Laplace Transformation Formula, andarrow_forwardma Classes Term. Spring 2025 Title Details Credit Hours CRN Schedule Type Grade Mode Level Date Status Message *MATHEMATICS FOR MANAGEME... MTH 245, 400 4 54835 Online Normal Grading Mode Ecampus Undergradu... 03/21/2025 Registered **Web Registered... *SOIL SCIENCE CSS 205, 400 0 52298 Online Normal Grading Mode Undergraduate 03/21/2025 Waitlisted Waitlist03/21/2025 PLANT PATHOLOGY BOT 451, 400 4 56960 Online Normal Grading Mode Undergraduate 03/21/2025 Registered **Web Registered... Records: 3 Schedule Schedule Detailsarrow_forwardHere is an augmented matrix for a system of equations (three equations and three variables). Let the variables used be x, y, and z: 1 2 4 6 0 1 -1 3 0 0 1 4 Note: that this matrix is already in row echelon form. Your goal is to use this row echelon form to revert back to the equations that this represents, and then to ultimately solve the system of equations by finding x, y and z. Input your answer as a coordinate point: (x,y,z) with no spaces.arrow_forward
- 1 3 -4 In the following matrix perform the operation 2R1 + R2 → R2. -2 -1 6 After you have completed this, what numeric value is in the a22 position?arrow_forward5 -2 0 1 6 12 Let A = 6 7 -1 and B = 1/2 3 -14 -2 0 4 4 4 0 Compute -3A+2B and call the resulting matrix R. If rij represent the individual entries in the matrix R, what numeric value is in 131? Input your answer as a numeric value only.arrow_forward1 -2 4 10 My goal is to put the matrix 5 -1 1 0 into row echelon form using Gaussian elimination. 3 -2 6 9 My next step is to manipulate this matrix using elementary row operations to get a 0 in the a21 position. Which of the following operations would be the appropriate elementary row operation to use to get a 0 in the a21 position? O (1/5)*R2 --> R2 ○ 2R1 + R2 --> R2 ○ 5R1+ R2 --> R2 O-5R1 + R2 --> R2arrow_forward
- The 2x2 linear system of equations -2x+4y = 8 and 4x-3y = 9 was put into the following -2 4 8 augmented matrix: 4 -3 9 This augmented matrix is then converted to row echelon form. Which of the following matrices is the appropriate row echelon form for the given augmented matrix? 0 Option 1: 1 11 -2 Option 2: 4 -3 9 Option 3: 10 ܂ -2 -4 5 25 1 -2 -4 Option 4: 0 1 5 1 -2 Option 5: 0 0 20 -4 5 ○ Option 1 is the appropriate row echelon form. ○ Option 2 is the appropriate row echelon form. ○ Option 3 is the appropriate row echelon form. ○ Option 4 is the appropriate row echelon form. ○ Option 5 is the appropriate row echelon form.arrow_forwardLet matrix A have order (dimension) 2x4 and let matrix B have order (dimension) 4x4. What results when you compute A+B? The resulting matrix will have dimensions of 2x4. ○ The resulting matrix will be a single number (scalar). The resulting matrix will have dimensions of 4x4. A+B is undefined since matrix A and B do not have the same dimensions.arrow_forwardIf -1 "[a446]-[254] 4b = -1 , find the values of a and b. ○ There is no solution for a and b. ○ There are infinite solutions for a and b. O a=3, b=3 O a=1, b=2 O a=2, b=1 O a=2, b=2arrow_forward
- A student puts a 3x3 system of linear equations is into an augmented matrix. The student then correctly puts the augmented matrix into row echelon form (REF), which yields the following resultant matrix: -2 3 -0.5 10 0 0 0 -2 0 1 -4 Which of the following conclusions is mathematically supported by the work shown about system of linear equations? The 3x3 system of linear equations has no solution. ○ The 3x3 system of linear equations has infinite solutions. The 3x3 system of linear equations has one unique solution.arrow_forwardSolve the following system of equations using matrices: -2x + 4y = 8 and 4x - 3y = 9 Note: This is the same system of equations referenced in Question 14. If a single solution exists, express your solution as an (x,y) coordinate point with no spaces. If there are infinite solutions write inf and if there are no solutions write ns in the box.arrow_forwardHi, I need to make sure I have drafted a thorough analysis, so please answer the following questions. Based on the data in the attached image, develop a regression model to forecast the average sales of football magazines for each of the seven home games in the upcoming season (Year 10). That is, you should construct a single regression model and use it to estimate the average demand for the seven home games in Year 10. In addition to the variables provided, you may create new variables based on these variables or based on observations of your analysis. Be sure to provide a thorough analysis of your final model (residual diagnostics) and provide assessments of its accuracy. What insights are available based on your regression model?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY