The decomposition of nitrosyl chloride was studied:
2NOCl(g) ⇌ 2NO(g) + Cl2(g)
The following data were obtained where
[NOCl]0(molecules/cm3) | Initial Rate (molecules/cm3 · s) |
3.0 × 1016 | 5.98 × 104 |
2.0 × 1016 | 2.66 × 104 |
1.0 × 1016 | 6.64 × 103 |
4.0 × 1016 | 1.06 × 105 |
a. What is the rate law?
b. Calculate the value of the rate constant.
c. Calculate the value of the rate constant when concentrations are given in moles per liter.
Trending nowThis is a popular solution!
Chapter 12 Solutions
Chemistry
Additional Science Textbook Solutions
Chemistry by OpenStax (2015-05-04)
Introduction to Chemistry
Chemistry In Context
Chemistry (7th Edition)
Chemistry
General, Organic, and Biological Chemistry - 4th edition
- The reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forwardNitrogen monoxide reacts with hydrogen as follows: 2NO(g)+H2(g)N2O(g)+H2O(g) The rate law is [H2]/t = k[NO]2[H2], where k is 1.10 107 L2/(mol2 s) at 826C. A vessel contains NO and H2 at 826C. The partial pressures of NO and H2 are 144 mmHg and 315 mmHg, respectively. What is the rate of decrease of partial pressure of NO? See Problem 13.151.arrow_forwardAmmonium cyanate, NH4NCO, rearranges in water to give urea, (NH2)2CO. NH4NCO(aq) (NH2)2CO(aq) Using the data in the table: (a) Decide whether the reaction is first-order or second-order. (b) Calculate k for this reaction. (c) Calculate the half-life of ammonium cyanate under these conditions. (d) Calculate the concentration of NH4NCO after 12.0 hours.arrow_forward
- The reaction H2SeO3(aq) + 6I-(aq) + 4H+(aq) Se(s) + 2I-3(aq) + 3H2O(l) was studied at 0C, and the following data were obtained: [H2SeO3]0 (mol/L) [H+]0 (mol/L) [I]0(mol/L) Initial Rate (mol/L s) 1.0 104 2.0 102 2.0 102 1.66 107 2.0 104 2.0 102 2.0 10-2 3.33 107 3.0 104 2.0 102 2.0 102 4.99 107 1.0 104 4.0 102 2.0 102 6.66 107 1.0 104 1.0 102 2.0 102 0.42 107 1.0 104 2.0 102 4.0 102 13.2 107 1.0 104 1.0 102 4.0 102 3.36 107 These relationships hold only if there is a very small amount of I3 present. What is the rate law and the value of the rate constant? (Assumethatrate=[H2SeO3]t)arrow_forwardThe reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forwardThe thermal decomposition of diacetylene, C4H2, was studied at 950 C. Use the following data (K. C. Hou and H. B. Palmer, Journal of Physical Chemistry. Vol. 60, p. 858, 1965) to determine the order of the reaction.arrow_forward
- 11.32 The following experimental data were obtained for the reaction 2A + 3 B—C + 2D [A](mol L 1) [B](mol L ’) Rate = A(C]/Af (mol L-1 s-1) 0.127 0.15 0.033 0.127 0.30 0.132 0.255 0.15 0.066 Determine the reaction order for each reactant and the value of the rate constant.arrow_forwardConsider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forward
- At 620. K butadiene dimerizes at a moderate rate. The following data were obtained in an experiment involving this reaction: t(s) [C4H6] (mol/L) 0 0.01000 1000.. 0.00629 2000. 0.00459 3000. 0.00361 a. Determine the order of the reaction in butadiene. b. In how many seconds is the dimerization 1.0% complete? c. In how many seconds is the dimerization 10.0% complete? d. What is the half-life for the reaction if the initial concentration of butadiene is 0.0200 M? e. Use the results from this problem and Exercise 45 to calculate the activation energy for the dimerization of butadiene.arrow_forwardYou are studying the kinetics of the reaction H2(g) + F2(g) 2HF(g) and you wish to determine a mechanism for the reaction. You run the reaction twice by keeping one reactant at a much higher pressure than the other reactant (this lower-pressure reactant begins at 1.000 atm). Unfortunately, you neglect to record which reactant was at the higher pressure, and you forget which it was later. Your data for the first experiment are: Pressure of HF (atm) Time(min) 0 0 0.300 30.0 0.600 65.8 0.900 110.4 1.200 169.1 1.500 255.9 When you ran the second experiment (in which the higher pressure reactant was run at a much higher pressure), you determine the values of the apparent rate constants to be the same. It also turns out that you find data taken from another person in the lab. This individual found that the reaction proceeds 40.0 times faster at 55C than at 35C. You also know, from the energy-level diagram, that there are three steps to the mechanism, and the first step has the highest activation energy. You look up the bond energies of the species involved and they are (in kJ/mol): H8H (432), F8F (154), and H8F (565). a. Sketch an energy-level diagram (qualitative) that is consistent with the one described previously. Hint: See Exercise 106. b. Develop a reasonable mechanism for the reaction. c. Which reactant was limiting in the experiments?arrow_forward(Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning