Two isomers (A and B) of a given compound dimerize as follows: 2A → k 1 A 2 2B → k 2 B 2 Both processes are known to be second order in reactant, and k 1 is known to be 0.250 L/mol · s at 25°C. In a particular experiment A and B were placed in separate containers at 25°C, where [A] 0 = 1.00 × 10 −2 M and [B] 0 = 2.50 × 10 −2 M . It was found that after each reaction had progressed for 3.00 min, [A] = 3.00[B]. In this case the rate laws are defined as Rate = − Δ [ A ] Δ t = k 1 [ A ] 2 R a t e = − Δ [ B ] Δ t = k 2 [ B ] 2 a. Calculate the concentration of A 2 after 3.00 min. b. Calculate the value of k 2 . c. Calculate the half-life for the experiment involving A.
Two isomers (A and B) of a given compound dimerize as follows: 2A → k 1 A 2 2B → k 2 B 2 Both processes are known to be second order in reactant, and k 1 is known to be 0.250 L/mol · s at 25°C. In a particular experiment A and B were placed in separate containers at 25°C, where [A] 0 = 1.00 × 10 −2 M and [B] 0 = 2.50 × 10 −2 M . It was found that after each reaction had progressed for 3.00 min, [A] = 3.00[B]. In this case the rate laws are defined as Rate = − Δ [ A ] Δ t = k 1 [ A ] 2 R a t e = − Δ [ B ] Δ t = k 2 [ B ] 2 a. Calculate the concentration of A 2 after 3.00 min. b. Calculate the value of k 2 . c. Calculate the half-life for the experiment involving A.
Solution Summary: The author explains that the concentration of the product is to be calculated corresponding to the given reactions and data. The rate constant for second order reaction is given by the equation.
Two isomers (A and B) of a given compound dimerize as follows:
2A
→
k
1
A
2
2B
→
k
2
B
2
Both processes are known to be second order in reactant, and k1
is known to be 0.250 L/mol · s at 25°C. In a particular experiment A and B were placed in separate containers at 25°C, where [A]0 = 1.00 × 10−2M and [B]0 = 2.50 × 10−2M. It was found that after each reaction had progressed for 3.00 min, [A] = 3.00[B]. In this case the rate laws are defined as
Rate
=
−
Δ
[
A
]
Δ
t
=
k
1
[
A
]
2
R
a
t
e
=
−
Δ
[
B
]
Δ
t
=
k
2
[
B
]
2
a. Calculate the concentration of A2 after 3.00 min.
b. Calculate the value of k2.
c. Calculate the half-life for the experiment involving A.
Draw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant
rate under these conditions, check the box underneath the drawing area instead.
Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products.
Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but
strong heat or reflux is not used.
Cl
Substitution will not occur at a significant rate.
Explanation
Check
:☐
O-CH
+
Х
Click and drag to start
drawing a structure.
Draw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant
rate under these conditions, check the box underneath the drawing area instead.
Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products.
Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but
strong heat or reflux is not used.
Cl
C
O Substitution will not occur at a significant rate.
Explanation
Check
+
O-CH3
Х
Click and drag to start
drawing a structure.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.