Linear Algebra A Modern Introduction David Poole Fourth Edition 2015
4th Edition
ISBN: 9781305016958
Author: David Poole
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1.2, Problem 21EQ
In Exercises 18-23, determine whether the angle between
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set
Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k
components, where k is the greatest common divisor of {n, r,s}.
Question 3
over a field K.
In this question, MË(K) denotes the set of n × n matrices
(a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is
equivalent to A-¹? Justify your answer.
(b) Let B be given by
8
B = 0 7 7
0 -7 7
Working over the field F2 with 2 elements, compute the rank of B as an element
of M2(F2).
(c) Let
1
C
-1 1
[4]
[6]
and consider C as an element of M3(Q). Determine the minimal polynomial
mc(x) and hence, or otherwise, show that C can not be diagonalised.
[7]
(d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write
down all the eigenvalues. Show your working.
[8]
R denotes the field of real numbers, Q denotes the field of rationals, and
Fp denotes the field of p elements given by integers modulo p. You may refer to general
results from lectures.
Question 1
For each non-negative integer m, let R[x]m denote the
vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m.
x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent
(a) Let vi = x, V2 =
list in R[x] 3.
(b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4)
is a basis of R[x] 3.
[8]
[6]
(c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a
linear map.
[6]
(d) Write down the matrix for the map ƒ defined in (c) with respect to the basis
(2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3.
[5]
Chapter 1 Solutions
Linear Algebra A Modern Introduction David Poole Fourth Edition 2015
Ch. 1.1 - Draw the following vectors in standard position in...Ch. 1.1 - Prob. 2EQCh. 1.1 - Prob. 3EQCh. 1.1 - For each of the following pairs of points, draw...Ch. 1.1 - Prob. 12EQCh. 1.1 - In Figure 1.24, A, B, C, D, E, and F are the...Ch. 1.1 - In Exercises 15 and 16, simplify the given vector...Ch. 1.1 - In Exercises 15 and 16, simplify the given vector...Ch. 1.1 - In Exercises 17 and 18, solve for the vector x in...Ch. 1.1 - In Exercises 17 and 18, solve for the vector x in...
Ch. 1.1 - In Exercises 19 and 20, draw the coordinate axes...Ch. 1.1 - In Exercises 21 and 22, draw the standard...Ch. 1.1 - In Exercises 25-28, u and v are binary vectors....Ch. 1.1 - In Exercises 25-28, u and v are binary vectors....Ch. 1.1 - In Exercises 25-28, u and v are binary vectors....Ch. 1.1 - In Exercises 25-28, u and v are binary vectors....Ch. 1.1 - Write out the addition and multiplication tables...Ch. 1.1 - Write out the addition and multiplication tables...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - Prob. 39EQCh. 1.1 - Prob. 40EQCh. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 31-43, perform the indicated...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - Prob. 51EQCh. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.1 - Prob. 54EQCh. 1.1 - In Exercises 44-55, solve the given equation or...Ch. 1.2 - In Exercises 1-6, find .
1.
Ch. 1.2 - In Exercises 1-6, find .
2.
Ch. 1.2 - In Exercises 1-6, find uv. u=[123],v=[231]Ch. 1.2 - In Exercises 1-6, find uv....Ch. 1.2 - In Exercises 13-16, find the distance...Ch. 1.2 - In Exercises 1-6, find .
6.
Ch. 1.2 - In Exercises 7-12, find for the given exercise,...Ch. 1.2 - In Exercises 7-12, find u for the given exercise,...Ch. 1.2 - In Exercises 7-12, find for the given exercise,...Ch. 1.2 - In Exercises 7-12, find u for the given exercise,...Ch. 1.2 - In Exercises 7-12, find for the given exercise,...Ch. 1.2 - In Exercises 7-12, find u for the given exercise,...Ch. 1.2 - In Exercises 13-16, find the distance between and...Ch. 1.2 - In Exercises 13-16, find the distance between and...Ch. 1.2 - Prob. 15EQCh. 1.2 - Prob. 16EQCh. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - In Exercises 18-23, determine whether the angle...Ch. 1.2 - Prob. 23EQCh. 1.2 - Prob. 24EQCh. 1.2 - Prob. 25EQCh. 1.2 - Prob. 26EQCh. 1.2 - Prob. 27EQCh. 1.2 - Prob. 28EQCh. 1.2 - Prob. 29EQCh. 1.2 -
In Exercises 40-45, find the projection of v onto...Ch. 1.2 - In Exercises 40-45, find the projection of vontou....Ch. 1.2 - Prob. 44EQCh. 1.2 - Prob. 45EQCh. 1.2 - In Exercises 48 and 49, find all values of the...Ch. 1.2 - In Exercises 48 and 49, find all values of the...Ch. 1.2 - Describe all vectors v=[xy] that are orthogonal to...Ch. 1.3 - In Exercises 1 and 2, write the equation of the...Ch. 1.3 - In Exercises 1 and 2, write the equation of the...Ch. 1.3 - Prob. 3EQCh. 1.3 - Prob. 4EQCh. 1.3 - Prob. 5EQCh. 1.3 - In Exercises 3-6, write the equation of the line...Ch. 1.3 - Prob. 7EQCh. 1.3 - In Exercises 7 and 8, write the equation of the...Ch. 1.3 - Prob. 9EQCh. 1.3 - In Exercises 9 and 10, write the equation of the...Ch. 1.3 - Prob. 11EQCh. 1.3 - In Exercises 11 and 12, give the vector equation...Ch. 1.3 - In Exercises 13 and 14, give the vector equation...Ch. 1.3 - In Exercises 13 and 14, give the vector equation...Ch. 1.3 - Find parametric equations and an equation in...Ch. 1.3 - Prob. 18EQCh. 1.3 - Prob. 19EQCh. 1.3 - 20. Find the vector form of the equation of the...Ch. 1.3 - Find the vector form of the equation of the line...Ch. 1.3 - Find the vector form of the equation of the line...Ch. 1.3 - Prob. 23EQCh. 1.3 - 24. Find the normal form of the equation of the...Ch. 1.3 - 26. Find the equation of the set of all points...Ch. 1.3 - In Exercises 27 and 28, find the distance from the...Ch. 1.3 - In Exercises 29 and 30, find the distance from the...Ch. 1.3 - Prob. 30EQCh. 1.3 - In Exercises 35 and 36, find the distance between...Ch. 1.3 - Prob. 37EQCh. 1.3 - In Exercises 37 and 38, find the distance between...Ch. 1.3 - In Exercises 43-44, find the acute angle between...Ch. 1.3 - Prob. 44EQCh. 1.4 - A sign hanging outside Joes Diner has a mass of 50...Ch. 1 - Mark each of the following statements true or...Ch. 1 - 2. If , and the vector is drawn with its tail at...Ch. 1 - 3. If , and , solve for x.
Ch. 1 - Prob. 5RQCh. 1 - 6. Find the projection of .
Ch. 1 - 7. Find a unit vector in the xy-plane that is...Ch. 1 - 8. Find the general equation of the plane through...Ch. 1 - Find the general equation of the plane through the...Ch. 1 - 10. Find the general equation of the plane through...Ch. 1 - 12. Find the midpoint of the line segment...Ch. 1 - Prob. 13RQCh. 1 - 14. Find the distance from the point to the plane...Ch. 1 - Find the distance from the point (3,2,5) to the...Ch. 1 - Prob. 16RQCh. 1 - Prob. 17RQCh. 1 - 18. If possible, solve .
Ch. 1 - Prob. 19RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Question 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forwardQuestion 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forward
- Question 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forwardSimplify the below expression. 3 - (-7)arrow_forward
- (6) ≤ a) Determine the following groups: Homz(Q, Z), Homz(Q, Q), Homz(Q/Z, Z) for n E N. Homz(Z/nZ, Q) b) Show for ME MR: HomR (R, M) = M.arrow_forward1. If f(x² + 1) = x + 5x² + 3, what is f(x² - 1)?arrow_forward2. What is the total length of the shortest path that goes from (0,4) to a point on the x-axis, then to a point on the line y = 6, then to (18.4)?arrow_forward
- موضوع الدرس Prove that Determine the following groups Homz(QZ) Hom = (Q13,Z) Homz(Q), Hom/z/nZ, Qt for neN- (2) Every factor group of adivisible group is divisble. • If R is a Skew ficald (aring with identity and each non Zero element is invertible then every R-module is free.arrow_forwardI have ai answers but incorrectarrow_forwardwhat is the slope of the linear equation-5x+2y-10=0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Inner Product Spaces; Author: Jeff Suzuki: The Random Professor;https://www.youtube.com/watch?v=JzCZUx9ZTe8;License: Standard YouTube License, CC-BY