Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 1CQ
To determine
The safe condition for a ladder, when it stands on the ground against the wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform ladder stands on a rough floor and rests against a frictionless wall as shown in the figure.
N2
mg
Since the floor is rough, it exerts both a normal force N, and a frictional force f, on the ladder. However, since the wall is frictionless, it
exerts only a normal force N, on the ladder. The ladder has a length of L = 4.7 m, a weight of W, = 64.5 N, and rests against the wall a
distance d = 3.75 m above the floor. If a person with a mass of m = 90 kg is standing on the ladder, determine the following.
(a) the forces exerted on the ladder when the person is halfway up the ladder (Enter the magnitude only.)
N1
N2
f, =
N
(b) the forces exerted on the ladder when the person is three-fourths of the way up the ladder (Enter the magnitude only.)
N2
N.
A 12 ft long, 38 lb ladder leans against a frictionless wall. The coefficient of friction
between the ladder and the ground, however, is 0.321. Can a 190 lb man walk up the
ladder all the way? If not, how far up (m) can he climb before the ladder begins to slip?
60
A ladder leans against a wall 5 meters above the ground so a homeowner can clear his gutters of leaves from last fall. The bottom of the ladder just begins to slip when it is 7.1 meters from the wall. What is the coefficient of static friction between the bottom of the ladder and the ground?
Chapter 12 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 12.1 - Consider the object subject to the two forces of...Ch. 12.1 - Consider the object subject to the three forces in...Ch. 12.2 - A meterstick of uniform density is hung from a...Ch. 12.4 - For the three parts of this Quick Quiz, choose...Ch. 12 - Prob. 1OQCh. 12 - Prob. 2OQCh. 12 - Prob. 3OQCh. 12 - Prob. 4OQCh. 12 - In the cabin of a ship, a soda can rests in a...Ch. 12 - Prob. 6OQ
Ch. 12 - Prob. 7OQCh. 12 - Prob. 8OQCh. 12 - Prob. 9OQCh. 12 - Prob. 10OQCh. 12 - Prob. 1CQCh. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - What kind of deformation does a cube of Jell-O...Ch. 12 - Prob. 1PCh. 12 - Why is the following situation impossible? A...Ch. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - Your brother is opening a skateboard shop. He has...Ch. 12 - A circular pizza of radius R has a circular piece...Ch. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - A uniform beam of length 7.60 m and weight 4.50 ...Ch. 12 - Prob. 12PCh. 12 - Prob. 13PCh. 12 - A uniform ladder of length L and mass m1 rests...Ch. 12 - A flexible chain weighing 40.0 N hangs between two...Ch. 12 - A uniform beam of length L and mass m shown in...Ch. 12 - Figure P12.13 shows a claw hammer being used to...Ch. 12 - A 20.0-kg floodlight in a park is supported at the...Ch. 12 - Prob. 19PCh. 12 - Review. While Lost-a-Lot ponders his next move in...Ch. 12 - John is pushing his daughter Rachel in a...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - A 10.0-kg monkey climbs a uniform ladder with...Ch. 12 - Prob. 25PCh. 12 - A steel wire of diameter 1 mm can support a...Ch. 12 - The deepest point in the ocean is in the Mariana...Ch. 12 - Assume Youngs modulus for bone is 1.50 1010 N/m2....Ch. 12 - A child slides across a floor in a pair of...Ch. 12 - Evaluate Youngs modulus for the material whose...Ch. 12 - Prob. 31PCh. 12 - When water freezes, it expands by about 9.00%....Ch. 12 - Prob. 33PCh. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Review. A 30.0-kg hammer, moving with speed 20.0...Ch. 12 - A bridge of length 50.0 m and mass 8.00 104 kg is...Ch. 12 - A uniform beam resting on two pivots has a length...Ch. 12 - Prob. 39APCh. 12 - The lintel of prestressed reinforced concrete in...Ch. 12 - Prob. 41APCh. 12 - When a person stands on tiptoe on one foot (a...Ch. 12 - A hungry bear weighing 700 N walks out on a beam...Ch. 12 - Prob. 44APCh. 12 - A uniform sign of weight Fg and width 2L hangs...Ch. 12 - Prob. 46APCh. 12 - Prob. 47APCh. 12 - Assume a person bends forward to lift a load with...Ch. 12 - A 10 000-N shark is supported by a rope attached...Ch. 12 - Prob. 50APCh. 12 - A uniform beam of mass m is inclined at an angle ...Ch. 12 - Prob. 52APCh. 12 - When a circus performer performing on the rings...Ch. 12 - Figure P12.38 shows a light truss formed from...Ch. 12 - Prob. 55APCh. 12 - A stepladder of negligible weight is constructed...Ch. 12 - A stepladder of negligible weight is constructed...Ch. 12 - Prob. 58APCh. 12 - Two racquetballs, each having a mass of 170 g, are...Ch. 12 - Review. A wire of length L, Youngs modulus Y, and...Ch. 12 - Review. An aluminum wire is 0.850 m long and has a...Ch. 12 - Prob. 62APCh. 12 - A 500-N uniform rectangular sign 4.00 m wide and...Ch. 12 - A steel cable 3.00 cm2 in cross-sectional area has...Ch. 12 - Prob. 65CPCh. 12 - In the What If? section of Example 12.2, let d...Ch. 12 - Prob. 67CPCh. 12 - A uniform rod of weight Fg and length L is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A One end of a metal rod of weight Fg and length L presses against a corner between a wall and the floor (Fig. P14.64). A rope is attached to the other end of the rod. Find the magnitude of the tension in the rope if the angle between the rod and the rope is 90.arrow_forwardChildren playing pirates have suspended a uniform wooden plank with mass 15.0 kg and length 2.50 m as shown in Figure P14.27. What is the tension in each of the three ropes when Sophia, with a mass of 23.0 kg, is made to walk the plank and is 1.50 m from reaching the end of the plank? FIGURE P14.27arrow_forwardA painter of mass 87.8 kg is 1.45 m from the top of a 6.67-m ladder. The ladder rests against a wall. Friction between the ladder and the wall is negligible. The ladders mass is 5.50 kg. Assume the ladder is set up according to Occupational Safety and Health Administration standards so that it makes a 75.5 angle with the floor. a. What is the minimum coefficient of static friction required for the painters safety? b. Would rubber ladder tips on dry concrete be safe?arrow_forward
- You have a summer job working downtown washing windows on skyscrapers (the pay is great and so are the medical benefits). The platform you and your partner are using to get to the windows is a meter wide and four meters long. You know from hauling the platform out of your truck countless times that it has a mass of 70 kg. It is supported by two cables, one at each end, mounted on-center to prevent the platform from tipping over as it is pulled up the side of the building at a constant speed. If you (mass of 55 kg) are standing on the platform 1 meter from one cable while your partner (mass of 87 kg) is 1.3 meters from the other cable and both of you are half a meter from the side, what is the tension in each cable? Assume the platform has a uniform mass distribution and is of negligible thickness.arrow_forwardA 75 kg window cleaner uses a 10 kg ladder that is 5.0 m long. He places one end on the ground 2.5 m from a wall, rests the upper end against a cracked window, and climbs the ladder. He is 3.0 m up along the ladder when the window breaks. Neglect friction between the ladder and window and assume that the base of the ladder does not slip.When the window is on the verge of breaking, what are (a) the magnitude of the force on the window from the ladder, (b) the magnitude of the force on the ladder from the ground, and (c) the angle (relative to the horizontal) of that force on the ladder?arrow_forwardAn 85 kg window cleaner uses a 10 kg ladder that is 5.3 m long. He places one end on the ground 3.2 m from a wall, rests the upper end against a cracked window, and climbs the ladder. He is 1.6 m up along the ladder when the window breaks. Neglect friction between the ladder and window and assume that the base of the ladder does not slip. When the window is on the verge of breaking, what are (a) the magnitude of the force on the window from the ladder, (b) the magnitude of the force on the ladder from the ground, and (c) the angle (relative to the horizontal) of that force on the ladder?arrow_forward
- A 100-kg cylinder is hung by means of two cables AB and AC that are attached to the top of a vertical wall. A horizontal force P perpendicular to the wall holds the cylinder in the position shown. Determine the magnitude of P and the tension in each cable. 5 m 4m 0.6m B P 100kg 1m 6 marrow_forwardAfrican elephants are the largest land animals. They consume approximately 10% of their body weight in food each day, which for an adult male, can be 1000 lb. of vegetation! Their diet consists mostly of grasses, bamboo, tree bark, and fruit. They also like to dine on tree leaves. To reach them, they often stand up on their hind legs and extend their trunks (see the figure). The elephant in the figure is in equilibrium. The location of the elephant's center of mass is shown, and the axis of rotation has been chosen to correspond to the hip joint. The forces in the elephant's free-body diagram are shown, and there is a static friction force between the elephant's back feet and the ground. Use the following information and calculate the magnitude of the tension in the elephant's trunk T (m = 4540 kg, FN = rfs = 133 cm, rcg = 76.0 cm, r = 229 cm). Number +x Axis of rotation Units 60 165 30 W TTFN cg 10° Michael Poliza/Caters News Agencyarrow_forwardon Two vertical walls are separated by a distance of 1.50 m, as the figure shows. Wall 1 is smooth, while wall 2 is not smooth. A uniform board is propped between them. The coefficient of static friction between the board and wall 2 is 0.851. What is the length of the longest board that can be propped between the walls? Wall 1 Wall 2 Narrow_forward
- I need help with this Hw Problem.arrow_forwardcan you please solve (c) ?arrow_forwardA 12-kg, 1.0-m-long uniform beam is attached to a wall by a cable. The beam is free to pivot at the point where it attaches to the wall. However, it remains motionless. What is the magnitude of the tension force in the cable?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning