Concept explainers
The quantity which is equal in both matrix and reinforcing phase when a force is applied parallel to a reinforcing phase of a composite material.
Answer to Problem 1CQ
Thestrainis equal in both matrix and reinforcing phase when a force is applied parallel to a reinforcing phase of a composite material.
Explanation of Solution
The composite material is a combination of two or more materials together to reinforce the properties of base material. In a composite material the matrix phase is reinforced or surrounded by second phase to provide unique properties like conductivity, strength, wear resistance etc. to composite.
When a force is applied to a reinforced phase, a strain developed in both the matrix and reinforcing phase. The developed strain is considered to be equal in magnitude for both the matrix and reinforce material.
When a force is applied to the reinforced phase, due to the stress developed, the material with very low strain to fracture will fails first. The failure is due to the fact that the phases of composite material would have same strain.
Conclusion:
Thus, thestrainis equal in both matrix and reinforcing phase when a force is applied parallel to a reinforcing phase of a composite material.
Want to see more full solutions like this?
Chapter 12 Solutions
Materials Science and Engineering Properties, SI Edition
- A floor consists of 8 steel beams/girders supporting three 1-way slab panels. The beams are supported on 6 columns around the perimeter of the roof. The roof is subjected to a uniform pressure of 150 psf . All beams and girders weigh 90lb//ft. Use free-body diagrams and statics equations to determine the load and reactions on all the beams (Beam 1, 2, 3 and 4), girders (Girders 1 and 2), and columns (Columns 1, 2 and 3). (we only focused on one-way slabs in the class + pls include FBDs)arrow_forwardDesign an intake tower with gates meet the following requirement: • Normal water surface elevation = 100 m mean sea level • Max. reservoir elevation = 106 m msl • Min. reservoir elevation = 90 m msl • Bottom elevation = 81m msl • Flow rate=57369.6 m³/day.. Velocity = 0.083 m/s ⚫c=0.6, Density for water =1000 kg/m³. Density for concrete =2310 kg/m³ Estimate water elevation that make safety factor =1 ร 4 m Uppr gate 2m 1 m Lower gate 2m Gate 6m 2m 4 m ร 2 m wzarrow_forward4. The storm hyetograph below produced 530 acre-ft of runoff over the 725-acre Green River watershed. Plot the storm hyetograph and compute and plot the excess rainfall hyetograph using the op-index method. Time (hours) 0-33-66-99-12 12-15 Rainfall Intensity (in/hr) 0.2 0.8|1.2 1.8 0.9arrow_forward
- -125 mm -125 mm -125 mm 100 mm P A C 310 x 45 made of A36 is connected to a plate and carries a load P in tension. The bolts are 22-mm in diameter and is staggered as shown in figure PSAD-016. Properties of C 310 x 45 A = 5680 mm² d = 305 mm t = 12.7 mm tw = 13.0 mm b = 80.5 mm x = 17.1 mm Determine the shear lag factor of the channel. Determine the effective net area of the section in mm². Compute the design capacity of the section.arrow_forwardPlease answer the following and show the step by step answer on clear paperarrow_forwardProblem #1 (Beam optimization). Calculate the length "a" of AB such that the bending moment diagram is optimized (the absolute value of the max and the min is at its lowest). Then draw the shear and moment diagram for the optimized length. Optimize the length to the nearest 0.1 m. You can use RISA 2D as a tool to find the optimized length, however you need to solve for the support reactions at A, B and C by hand and draw the shear and moment diagram by hand. w=20 kN/m A + + a 12 m B Carrow_forward
- 2. Using the Green-Ampt Model, compute the infiltration rate, f, and cumulative infiltration, F, after one hour of infiltration into a sandy clay loam soil. Assume initial moisture conditions are midway between the field capacity and wilting point and that water is ponded to a small but negligible depth on the surface.arrow_forwardAssignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forwardA1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forward
- Please show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forwardFind required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forwardPlease answer this and show me the step by step solutiarrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning