College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 15CQ
Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect. Explain in terms of energy how the water can emerge from the nozzle against the opposing atmospheric pressure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
College Physics
Ch. 12 - What is the difference between flow rate and fluid...Ch. 12 - Many figures in the text show streamlines. Explain...Ch. 12 - Identify some substances that are incompressible...Ch. 12 - You can squirt water a considerably greater...Ch. 12 - Water is shot nearly vertically upward in a...Ch. 12 - Look back to Figure 12.4. Answer the following two...Ch. 12 - Give an example of entrainment not mentioned in...Ch. 12 - Prob. 8CQCh. 12 - Some chimney pipes have a T-shape, with a...Ch. 12 - Is there a limit to the height to which an...
Ch. 12 - Why is it preferable for airplanes to take off...Ch. 12 - Roofs are sometimes pushed off vertically during a...Ch. 12 - Why does a sailboat need a keel?Ch. 12 - It is dangerous to stand close to railroad tracks...Ch. 12 - Water pressure inside a hose nozzle can be less...Ch. 12 - Prob. 16CQCh. 12 - If you lower the window on a car while moving, an...Ch. 12 - Based on Bernoulli's equation, what are three...Ch. 12 - Water that has emerged from a hose into the...Ch. 12 - Prob. 20CQCh. 12 - Water pressure inside a hose nozzle can be less...Ch. 12 - Explain why the viscosity of a liquid decreases...Ch. 12 - When paddling a canoe upstream, it is wisest to...Ch. 12 - Why does flow decrease in your shower when someone...Ch. 12 - Prob. 25CQCh. 12 - Doppler ultrasound can be used to the speed of...Ch. 12 - Prob. 27CQCh. 12 - Some ceiling fans have decorative wicker reeds on...Ch. 12 - What direction will a helium balloon move inside a...Ch. 12 - Will identical raindrops fall more rapidly in 5° C...Ch. 12 - If you took two marbles of different sizes, what...Ch. 12 - Why would you expect the rate of diffusion to...Ch. 12 - How are osmosis and dialysis similar? How do they...Ch. 12 - What is the average flow rate in cm3/S of gasoline...Ch. 12 - The heart of a resting adult pumps blood at a rate...Ch. 12 - Blood is pumped from the heart at a rate of 5.0...Ch. 12 - Blood is flowing through an artery of radius 2 mm...Ch. 12 - Prob. 5PECh. 12 - A major artery with a cross-sectional area of 1.00...Ch. 12 - (a) As blood passes through the capillary bed in...Ch. 12 - The human circulation system has approximately...Ch. 12 - (a) Estimate the time it would take to fill a...Ch. 12 - The flow rate of blood through 2.00106 -m-radius...Ch. 12 - (a) What is the fluid speed in a fire hose with a...Ch. 12 - The main uptake air duct of a forced air gas...Ch. 12 - Water is moving at a velocity of 2.00 m/s through...Ch. 12 - Prove that the speed of an incompressible fluid...Ch. 12 - Water emerges straight down from a faucet with a...Ch. 12 - Unreasonable Results A mountain stream is 10.0 m...Ch. 12 - Verify that pressure has units of energy per unit...Ch. 12 - Suppose you have a wind speed gauge like the pitot...Ch. 12 - If the pressure reading of your pitot tube is 15.0...Ch. 12 - Calculate the maximum height to which water could...Ch. 12 - Every few years, winds in Boulder, Colorado,...Ch. 12 - (a) Calculate the approximate force on a square...Ch. 12 - (a) What is the pressure drop due to the Bernoulli...Ch. 12 - (a) Using Bernoulli's equation, show that the...Ch. 12 - Hoover Dam on the Colorado River is the highest...Ch. 12 - A frequently quoted rule of thumb in aircraft...Ch. 12 - The left ventricle of a resting adult's heart...Ch. 12 - A sump pump (used to drain water from the basement...Ch. 12 - (a) Calculate the retarding force due to the...Ch. 12 - What force is needed to pull one microscope slide...Ch. 12 - A glucose solution being administered with an IV...Ch. 12 - The pressure drop along a length of artery is 100...Ch. 12 - A small artery has a length of 1.1103 m and a...Ch. 12 - Fluid originally flows through a tube at a rate of...Ch. 12 - The arterioles (small arteries) leading to an...Ch. 12 - Angioplasty is a technique in which arteries...Ch. 12 - (a) Suppose a blood vessel's radius is decreased...Ch. 12 - A spherical particle falling at a terminal speed...Ch. 12 - Using the equation of the previous problem, find...Ch. 12 - A skydiver will reach a terminal velocity when the...Ch. 12 - A layer of oil 1.50 mm thick is placed between two...Ch. 12 - (a) Verify that a 19.0% decrease in laminar flow...Ch. 12 - Example 12.8 dealt with the flow of saline...Ch. 12 - When physicians diagnose arterial blockages, they...Ch. 12 - During a marathon race, a runner's blood flow...Ch. 12 - Water supplied to a house by a water main has a...Ch. 12 - An oil gusher shoots crude oil 25.0 m into the air...Ch. 12 - Concrete is pumped from a cement mixer to the...Ch. 12 - Construct Your Own Problem Consider a coronary...Ch. 12 - Consider a river that spreads out in a delta...Ch. 12 - Verify that the flow of oil is laminar (barely)...Ch. 12 - Show that the Reynolds number NRis unitless by...Ch. 12 - Calculate the Reynolds numbers for the flow of...Ch. 12 - A fire hose has an inside diameter of 6.40 cm....Ch. 12 - Concrete is pumped from a cement mixer to the...Ch. 12 - At what flow rate might turbulence begin to...Ch. 12 - What is the greatest average speed of blood flow...Ch. 12 - In Take-Home Experiment: Inhalation, we measured...Ch. 12 - Gasoline is piped underground from refineries to...Ch. 12 - Assuming that blood is an ideal fluid, calculate...Ch. 12 - Unreasonable Results A fairly large garden hose...Ch. 12 - You can smell perfume very shortly after opening...Ch. 12 - What is the ratio of the average distances that...Ch. 12 - Oxygen reaches the veinless cornea of the eye by...Ch. 12 - (a) Find the average time required for an oxygen...Ch. 12 - Suppose hydrogen and oxygen are diffusing through...Ch. 12 - Prob. 1TPCh. 12 - Prob. 2TPCh. 12 - Prob. 3TPCh. 12 - Prob. 4TPCh. 12 - Prob. 5TPCh. 12 - Prob. 6TPCh. 12 - Prob. 7TPCh. 12 - Prob. 8TPCh. 12 - Prob. 9TPCh. 12 - Prob. 10TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Which of the following statements about the general functions of the nervous system is false?
The three primary...
Human Anatomy & Physiology (2nd Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
1. A person gets in an elevator on the ground floor and rides it to the top floor of a building. Sketch a veloc...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect. Explain in terms of energy how the water can emerge from the nozzle against the opposing atmospheric pressure.arrow_forwardA water supply maintains a constant rate of flow for water in a hose. You want to change the opening of the nozzle so that water leaving the nozzle will reach a height that is four times the current maximum height the water reaches with the nozzle vertical. To do so, should you (a) decrease the area of the opening by a factor of 16, (b) decrease the area by a factor of 8, (c) decrease the area by a factor of 4, (d) decrease the area by a factor of 2, or (e) give up because it cannot be done?arrow_forwardAn ideal fluid flows through a horizontal pipe whose diameter varies along its length. Measurements would indicate that the sum of the kinetic energy per unit volume and pressure at different sections of the pipe would (a) decrease as the pipe diameter increases, (b) increase as the pipe diameter increases, (c) increase as the pipe diameter decreases, (d) decrease as the pipe diameter decreases, or (e) remain the same as the pipe diameter changes.arrow_forward
- Water supplied to a house by a water main has a pressure of 3.00105N/m2 early on a summer day when neighborhood use is low. This pressure produces a flow of 20.0 L/min through a garden hose. Later in the day, pressure at the exit of the water main and entrance to the house drops, and a flow of only 8.00 L/min is obtained through the same hose. (a) What pressure is now being supplied to the house, assuming resistance is constant? (b) By what factor did the flow rate be water main increase in order to cause this decrease in delivered pressure? The pressure at the entrance of the water main is 5.00105N/m2 , and the original rate was 200 L/min. (c) How many more users are there, assuming each would consume 20.0 L/min in be morning?arrow_forward(a) How high will water rise in a glass capillary tube with a 0.500-mm radius? (b) How much gravitational potential energy does the water gain? (c) Discuss possible sources of this energy.arrow_forwardReview. The tank in Figure P15.13 is filled with water of depth d. At the bottom of one sidewall is a rectangular hatch of height h and width w that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by die water about die hinges.arrow_forward
- (a) Verify that work input equals work output for a hydraulic system assuming no losses to friction. Do this by showing that the distance the output force moves is reduced by the same factor that the output force is increased. Assume the volume of the fluid is constant. (b) What effect would friction within the fluid and between components in the system have on the output force? How would this depend on whether or not the fluid is moving?arrow_forwardVerify that work input equals work output for a hydraulic system assuming no losses due to fiction. Do this by showing that distance output force moves is reduced by the same factor output force is increased. Assume the volume of the fluid is constant. What effect would friction within the fluid and between components in the system have output force? How would this depend on whether or not fluid is moving?arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forward
- When a person sits erect, increasing the vertical position of their brain by 36.0 cm, the heart must continue to pump blood to the brain at the same rate. (a) What is the gain in gravitational potential energy for 100 mL of blood raised 36.0 cm? (b) What is the drop in pressure, neglecting any losses due to friction? (c) Discuss how the gain in gravitational potential energy and the decrease in pressure are related.arrow_forwardReview. The tank in Figure P15.13 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 m that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by the water about the hinges.arrow_forward(a) What is the pressure drop due to the Bernoulli effect as water goes into a 3.00-cm-diameter nozzle from a 9.00-cm-diameter fire hose while carrying a flow of 40.0 L/S? (b) To what maximum height above the nozzle can this water rise? (The actual height will be significantly smaller due to air resistance.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY