College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 51PE
Verify that the flow of oil is laminar (barely) for an oil gusher that shoots crude oil 25.0 m into the air through a pipe with a 0.100-m diameter. The vertical pipe is 50 m long. Take the density of the oil to be 900 kg/m3 and its viscosity to be 1.00(N/m2)
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 12 Solutions
College Physics
Ch. 12 - What is the difference between flow rate and fluid...Ch. 12 - Many figures in the text show streamlines. Explain...Ch. 12 - Identify some substances that are incompressible...Ch. 12 - You can squirt water a considerably greater...Ch. 12 - Water is shot nearly vertically upward in a...Ch. 12 - Look back to Figure 12.4. Answer the following two...Ch. 12 - Give an example of entrainment not mentioned in...Ch. 12 - Prob. 8CQCh. 12 - Some chimney pipes have a T-shape, with a...Ch. 12 - Is there a limit to the height to which an...
Ch. 12 - Why is it preferable for airplanes to take off...Ch. 12 - Roofs are sometimes pushed off vertically during a...Ch. 12 - Why does a sailboat need a keel?Ch. 12 - It is dangerous to stand close to railroad tracks...Ch. 12 - Water pressure inside a hose nozzle can be less...Ch. 12 - Prob. 16CQCh. 12 - If you lower the window on a car while moving, an...Ch. 12 - Based on Bernoulli's equation, what are three...Ch. 12 - Water that has emerged from a hose into the...Ch. 12 - Prob. 20CQCh. 12 - Water pressure inside a hose nozzle can be less...Ch. 12 - Explain why the viscosity of a liquid decreases...Ch. 12 - When paddling a canoe upstream, it is wisest to...Ch. 12 - Why does flow decrease in your shower when someone...Ch. 12 - Prob. 25CQCh. 12 - Doppler ultrasound can be used to the speed of...Ch. 12 - Prob. 27CQCh. 12 - Some ceiling fans have decorative wicker reeds on...Ch. 12 - What direction will a helium balloon move inside a...Ch. 12 - Will identical raindrops fall more rapidly in 5° C...Ch. 12 - If you took two marbles of different sizes, what...Ch. 12 - Why would you expect the rate of diffusion to...Ch. 12 - How are osmosis and dialysis similar? How do they...Ch. 12 - What is the average flow rate in cm3/S of gasoline...Ch. 12 - The heart of a resting adult pumps blood at a rate...Ch. 12 - Blood is pumped from the heart at a rate of 5.0...Ch. 12 - Blood is flowing through an artery of radius 2 mm...Ch. 12 - Prob. 5PECh. 12 - A major artery with a cross-sectional area of 1.00...Ch. 12 - (a) As blood passes through the capillary bed in...Ch. 12 - The human circulation system has approximately...Ch. 12 - (a) Estimate the time it would take to fill a...Ch. 12 - The flow rate of blood through 2.00106 -m-radius...Ch. 12 - (a) What is the fluid speed in a fire hose with a...Ch. 12 - The main uptake air duct of a forced air gas...Ch. 12 - Water is moving at a velocity of 2.00 m/s through...Ch. 12 - Prove that the speed of an incompressible fluid...Ch. 12 - Water emerges straight down from a faucet with a...Ch. 12 - Unreasonable Results A mountain stream is 10.0 m...Ch. 12 - Verify that pressure has units of energy per unit...Ch. 12 - Suppose you have a wind speed gauge like the pitot...Ch. 12 - If the pressure reading of your pitot tube is 15.0...Ch. 12 - Calculate the maximum height to which water could...Ch. 12 - Every few years, winds in Boulder, Colorado,...Ch. 12 - (a) Calculate the approximate force on a square...Ch. 12 - (a) What is the pressure drop due to the Bernoulli...Ch. 12 - (a) Using Bernoulli's equation, show that the...Ch. 12 - Hoover Dam on the Colorado River is the highest...Ch. 12 - A frequently quoted rule of thumb in aircraft...Ch. 12 - The left ventricle of a resting adult's heart...Ch. 12 - A sump pump (used to drain water from the basement...Ch. 12 - (a) Calculate the retarding force due to the...Ch. 12 - What force is needed to pull one microscope slide...Ch. 12 - A glucose solution being administered with an IV...Ch. 12 - The pressure drop along a length of artery is 100...Ch. 12 - A small artery has a length of 1.1103 m and a...Ch. 12 - Fluid originally flows through a tube at a rate of...Ch. 12 - The arterioles (small arteries) leading to an...Ch. 12 - Angioplasty is a technique in which arteries...Ch. 12 - (a) Suppose a blood vessel's radius is decreased...Ch. 12 - A spherical particle falling at a terminal speed...Ch. 12 - Using the equation of the previous problem, find...Ch. 12 - A skydiver will reach a terminal velocity when the...Ch. 12 - A layer of oil 1.50 mm thick is placed between two...Ch. 12 - (a) Verify that a 19.0% decrease in laminar flow...Ch. 12 - Example 12.8 dealt with the flow of saline...Ch. 12 - When physicians diagnose arterial blockages, they...Ch. 12 - During a marathon race, a runner's blood flow...Ch. 12 - Water supplied to a house by a water main has a...Ch. 12 - An oil gusher shoots crude oil 25.0 m into the air...Ch. 12 - Concrete is pumped from a cement mixer to the...Ch. 12 - Construct Your Own Problem Consider a coronary...Ch. 12 - Consider a river that spreads out in a delta...Ch. 12 - Verify that the flow of oil is laminar (barely)...Ch. 12 - Show that the Reynolds number NRis unitless by...Ch. 12 - Calculate the Reynolds numbers for the flow of...Ch. 12 - A fire hose has an inside diameter of 6.40 cm....Ch. 12 - Concrete is pumped from a cement mixer to the...Ch. 12 - At what flow rate might turbulence begin to...Ch. 12 - What is the greatest average speed of blood flow...Ch. 12 - In Take-Home Experiment: Inhalation, we measured...Ch. 12 - Gasoline is piped underground from refineries to...Ch. 12 - Assuming that blood is an ideal fluid, calculate...Ch. 12 - Unreasonable Results A fairly large garden hose...Ch. 12 - You can smell perfume very shortly after opening...Ch. 12 - What is the ratio of the average distances that...Ch. 12 - Oxygen reaches the veinless cornea of the eye by...Ch. 12 - (a) Find the average time required for an oxygen...Ch. 12 - Suppose hydrogen and oxygen are diffusing through...Ch. 12 - Prob. 1TPCh. 12 - Prob. 2TPCh. 12 - Prob. 3TPCh. 12 - Prob. 4TPCh. 12 - Prob. 5TPCh. 12 - Prob. 6TPCh. 12 - Prob. 7TPCh. 12 - Prob. 8TPCh. 12 - Prob. 9TPCh. 12 - Prob. 10TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
17. Anthropologists are interested in locating areas in Africa where fossils 4-8 million years old might be fou...
Campbell Biology: Concepts & Connections (9th Edition)
2. The three ropes in FIGURE EX6.2 are tied to a small, very light ring. Two of the ropes are anchored to wa...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Why is it unlikely that two neighboring water molecules would be arranged like this?
Campbell Biology (11th Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The gravitational force exerted on a solid object is 5.00 N. When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N (Fig. P15.24). Find the density of the object. Figure P15.24 Problems 24 and 25.arrow_forwardA horizontal pipe 10.0 cm in diameter has a smooth reduction to a pipe 5.00 cm in diameter. If the pressure of the water in the larger pipe is 8.00 104 Pa and the pressure in the smaller pipe is 6.00 104 Pa, at what rate does water flow through the pipes?arrow_forwardA large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank (Fig. P15.39). Find an expression for how far from the tank the exiting stream lands. Figure P15.39arrow_forward
- What is the greatest average speed of blood flow at 37° C in an artery of radius 2.00 mm if the flow is to remain laminar? What is the corresponding flow rate? Take the density of blood to be 1025 kg/m3.arrow_forward(a) Verify that a 19.0% decrease in laminar flow through a tube is caused by a 5.00% decrease in radius, assuming that all other factors remain constant. (b) What increase in flow is obtained from a 5.00% increase in radius, again assuming all other factors remain constant?arrow_forwardHow tall must a water-filled manometer be to measure blood pressures as high as 300 mm Hg?arrow_forward
- A fluid flows through a horizontal pipe that widens, making a 45 angle with the y axis (Fig. P15.48). The thin part of the pipe has radius R, and the fluids speed in the thin part of the pipe is v0. The origin of the coordinate system is at the point where the pipe begins to widen. The pipes cross section is circular. a. Find an expression for the speed v(x) of the fluid as a function of position for x 0 b. Plot your result: v(x) versus x. FIGURE P15.48 (a) The continuity equation (Eq. 15.21) relates the cross-sectional area to the speed of the fluid traveling through the pipe. A0v0 = A(x)v(x) v(x)=A0v0A(x) The cross sectional area is the area of a circle whose radius is y(x). The widening pan of the pipe is a straight line with slope of 1 and intercept y(0) = R. y(x) = mx + b = x + R A(x) = [y(x)]2 = (x + R)2 Plug this into the formula for the velocity. Plug this into the formula for the velocity. v(x)=A0v0(x+R)2arrow_forwardReview. The tank in Figure P15.13 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 m that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by the water about the hinges.arrow_forwardThe left ventricle of a resting adult's heart pumps blood at a flow rate of 83.0 cm3/s , increasing its pressure by 110 mm Hg, its speed from zero to 30.0 cm/s, and its height by 5.00 cm. (All cumbers are averaged over the entire heartbeat) Calculate the total power output of left ventricle. Note that most of the power is used to increase blood pressure.arrow_forward
- A 1.00-kg beaker containing 2.00 kg of oil (density = 916.0 kg/m3) rests on a scale. A 2.00-kg block of iron suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forwardGasoline is piped underground from refineries to major users. The flow rate is 3.00102 m3/s (about 500 gal/ min), the viscosity of gasoline is 1.00103 (N/m2) s, and its density is 680 kg/m3. (a) What minimum diameter must the pipe have if the Reynolds number is to be less than 2000? (b) What pressure difference must be maintained along each kilometer of the pipe to maintain this flow rate?arrow_forwardA U-tube open at both ends is partially filled with water (Fig. P15.67a). Oil having a density 750 kg/m3 is then poured into the right arm and forms a column L = 5.00 cm high (Fig. P15.67b). (a) Determine the difference h in the heights of the two liquid surfaces. (b) The right arm is then shielded from any air motion while air is blown across the top of the left arm until the surfaces of the two liquids are at the same height (Fig. P15.67c). Determine the speed of the air being blown across the left arm. Take the density of air as constant at 1.20 kg/m3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY