
(a)
Interpretation:
Germanium doped with arsenic should be classified as p or n -type semiconductor.
Concept introduction:
According to band theory, solids are classified as conductors, semiconductors, and insulators.
As per band theory, bands are a continuum of energy levels. The bands are of two types: valence band and conduction band.
The band that holds valence electrons is valence band and band that is slightly higher in energy than valence band is conduction band. On the basis of band theory, partly filled band shows conduction and are called conductors, and fully filled band doesn’t show conduction and are insulators.
(b)
Interpretation:
Germanium doped with boron should be classified as p or n -type semiconductor.
Concept introduction:
According to band theory, solids are classified as conductors, semiconductors, and insulators.
As per band theory, bands are a continuum of energy levels. The bands are of two types: valence band and conduction band.
The band that holds valence electrons is valence band and band that is slightly higher in energy than valence band is conduction band. On the basis of band theory, partly filled band shows conduction and are called conductors, and fully filled band doesn’t show conduction and are insulators.
(c)
Interpretation:
Silicon doped with antimony should be classified as p or n -type semiconductor.
Concept introduction:
According to band theory, solids are classified as conductors, semiconductors, and insulators.
As per band theory, bands are a continuum of energy levels. The bands are of two types: valence band and conduction band.
The band that holds valence electrons is valence band and band that is slightly higher in energy than valence band is conduction band. On the basis of band theory, partly filled band shows conduction and are called conductors, and fully filled band doesn’t show conduction and are insulators.

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
Chemistry, Loose-leaf Edition (8th Edition)
- drawing, no aiarrow_forwardDraw the major organic product when each of the bellow reagents is added to 3,3-dimethylbutere. ✓ 3rd attempt Part 1 (0.3 point) H.C CH CH + 1. BHG THF 210 NaOH NJ 10000 Part 2 (0.3 point) HC- CH HC 2741 OH a Search 1. He|DA HO 2. NIBH さ 士 Ju See Periodic Table See Hint j = uz C H F F boxarrow_forwardSynthesis of 2-metilbenzimidazol from 1,2-diaminobenceno y propanona.arrow_forward
- Predict the product of the following reaction. 1st attempt HI 1 product 50300 Jul See Periodic Table See Hint P Br 石尚 Iarrow_forwardIndicate the substitutes in one place, if they are a diazonio room.arrow_forwardIndicate the product formed in each reaction. If the product exhibits tautomerism, draw the tautomeric structure. a) о + CH3-NH-NH2 CO2C2H5 b) + CoH5-NH-NH2 OC2H5arrow_forward
- Indicate the formula of the compound, that is the result of the N- alquilación (nucleofílic substitution), in which an additional lateral chain was formed (NH-CH2-COOMe). F3C. CF3 NH NH2 Br о OMe K2CO3, DABCO, DMFarrow_forwardSynthesis of 1-metilbenzotriazole from 1,2-diaminobenceno.arrow_forwardSynthesis of 1-metilbenzotriazole.arrow_forward
- Indicate the formula of the compound, that is the result of the N- alquilación (nucleofílic substitution), in which an additional lateral chain was formed (NH-CH2-COOMe). F3C. CF3 NH NH2 Br о OMe K2CO3, DABCO, DMFarrow_forwardIdentify the mechanism through which the following reaction will proceed and draw the major product. Part 1 of 2 Br KOH EtOH Through which mechanism will the reaction proceed? Select the single best answer. E1 E2 neither Part: 1/2 Part 2 of 2 Draw the major product formed as a result of the reaction. Click and drag to start drawing a structure. Xarrow_forwardWhat is single-point calibration? Provide an example.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning



