(a)
Interpretation:
Germanium doped with arsenic should be classified as p or n -type semiconductor.
Concept introduction:
According to band theory, solids are classified as conductors, semiconductors, and insulators.
As per band theory, bands are a continuum of energy levels. The bands are of two types: valence band and conduction band.
The band that holds valence electrons is valence band and band that is slightly higher in energy than valence band is conduction band. On the basis of band theory, partly filled band shows conduction and are called conductors, and fully filled band doesn’t show conduction and are insulators.
(b)
Interpretation:
Germanium doped with boron should be classified as p or n -type semiconductor.
Concept introduction:
According to band theory, solids are classified as conductors, semiconductors, and insulators.
As per band theory, bands are a continuum of energy levels. The bands are of two types: valence band and conduction band.
The band that holds valence electrons is valence band and band that is slightly higher in energy than valence band is conduction band. On the basis of band theory, partly filled band shows conduction and are called conductors, and fully filled band doesn’t show conduction and are insulators.
(c)
Interpretation:
Silicon doped with antimony should be classified as p or n -type semiconductor.
Concept introduction:
According to band theory, solids are classified as conductors, semiconductors, and insulators.
As per band theory, bands are a continuum of energy levels. The bands are of two types: valence band and conduction band.
The band that holds valence electrons is valence band and band that is slightly higher in energy than valence band is conduction band. On the basis of band theory, partly filled band shows conduction and are called conductors, and fully filled band doesn’t show conduction and are insulators.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- 8.96 A business manager wants to provide a wider range of p- and n-type semiconductors as a strategy to enhance sales. You are the lead materials engineer assigned to communicate with this manager. How would you explain why there are more ways to build a p-type semiconductor from silicon than there are ways to build an n-type semiconductor from silicon?arrow_forward(a) Why electrical conductivity of the semiconductor increases with increase in temperature? Illustrate and explain the above effect with hypothetical band energy diagrams, showing one at 25 °C and another at 50 °C? (b) The number average molecular weight of polyvinyl chloride (PVC) is 110000 g/mol and the Polydispersity index (PDI) is 1.3. What is the weight average molecular weight and degree of polymerization of PVC? Note: Molar mass of vinyl chloride is 62.498 g/molarrow_forward7 Describe the theory behind:- a) Precipitation Age Hardening of Aluminum alloys b) Hardenability of steels Give diagrams as well in each case.arrow_forward
- Predict the structure of each of the following silicate minerals (network, sheets, double chains, and so forth). Give the oxidation state of each atom.(a) Apophyllite, KCa4(Si8O20)F ? 8 H2O(b) Rhodonite, CaMn4(Si5O15)(c) Margarite, CaAl2(Al2Si2O10)(OH)2arrow_forwardDefine the following:(i) F-centre (ii) p-type semiconductor(iii) Ferrimagnetism.arrow_forwardKk.332.arrow_forward
- Is Aluminium is commonly deliberately alloyed with iron? Why ?arrow_forwardBlue LEDS are made from In,Ga1-N semiconductors with a band gap in eV given by Eg = 3.40 – 3.75x + x2 (b) Given that the wavelength of blue visible light is 470 nm, what would be the value of x necessary to make a blue LED? Note the solutions to the quadratic equation 0 = ax? + bx + c are given by -b + Vb2 – 4ac X = 2aarrow_forward2. What is the coordination number structure formed by most semiconductors and electronic materials (GaAs, Cds)arrow_forward
- Direct bandgap semiconductor materials generally support radiative (optoelectronic) transitions better compared to indirect bandgap semiconductor materials. Why?arrow_forwardQuestion Seven (a) For refractory ceramic materials, cite two characteristics that improve with and two characteristics that are adversely affected by increasing porosity. (b) Show that the minimum cation-to-anion radius ratio for a coordination number of 4 is 0.225. (Hint: Use the AX crystal structure, assuming the anion spheres touch in plane). (c) The unit cell for Al>O; has hexagonal symmetry with lattice parameters a = 0.4759 nm and c 1.2 nm. If the density of this material is equal to 3.99 g/cm' and is calculated according to the formuka n'(EAc+ EA) VcNA Calculate the atormic packing factor for Al>O1, given that the ionic radius for AI is 0.053 nm and i 0' is 0.140 nm. Take N = 6.023 x 1023 atoms'mole. (d) Mention any three industrial ceramics and indicate their applications.arrow_forwardSketch the band structure of a Li AND a Si crystal. (ii) How would you expect the electrical conductivity in Li AND Si crystals to vary with temperature? (iii) Account for the fact that the conductivity of Si is enhanced by the addition of small amounts of B.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning