Elements Of Physical Chemistry
Elements Of Physical Chemistry
7th Edition
ISBN: 9780198796701
Author: ATKINS, P. W. (peter William), De Paula, Julio
Publisher: Oxford University Press
Question
Book Icon
Chapter 12, Problem 12.5P

(a)

Interpretation Introduction

Interpretation:

With the given data the total vibrational partition function of CO2 at 500K has to be found.

Concept Introduction:

Partition function:

The partition function contains all the thermodynamic information about a system. Such information can be used to calculate thermodynamic properties such as the internal energy, entropy, and the Gibbs energy. In general, the molecular partition function gives an indication of the average number of states that are thermally accessible to a molecule at the temperature of the system.

The vibration partition function has the following expression.

qv=kTqv=Vibrationalpartitionfunction

h=Plank'sconstant=6.626×10-34Jsυ=frequency=79.1975×107s-1Determinedk=Boltzmannconstant=1.381×10-23JK-1T=Temperature=298KGiven

(a)

Expert Solution
Check Mark

Answer to Problem 12.5P

The total vibrational partition function of CO2 at 500K has to be found as qtotalv=1.37665×1023.

Explanation of Solution

Converting the given wavenumbers from cm-1 to m-1.

For υ¯=1388cm-1

100cm=1m1388cm×1m100cm=13.88mΔυ=1388cm1=13.88m1

For υ¯=2349cm-1

100cm=1m2349cm×1m100cm=23.49mΔυ=2349cm1=23.49m1

For υ¯=667cm-1

100cm=1m667cm×1m100cm=6.67mΔυ=667cm1=6.67m1

Converting each wavenumber into their corresponding wavelengths:

υ¯=1λυ¯=Wavenumber.λ=Wavelengthcorrespondingtothegivenwavenumber.

For υ¯=13.88m1

υ¯=1λ13.88m1=1λλ=113.88m1=0.0720m

λ=0.0720m

For υ¯=23.49m1

υ¯=1λ23.49m1=1λλ=123.49m1=0.0426m

λ=0.0426m

For υ¯=6.67m1

υ¯=1λ6.67m1=1λλ=16.67m1=0.1499m

λ=0.1499m

Converting each wavelength into their corresponding frequencies:

υ=cλυ=Frequencyc=Velocityoflight=3×108ms-1λ=Wavelength.

For λ=0.0720m

υ=cλ=3×108ms-10.3788m=41.6667×108s-1υ=41.6667×108s-1

For λ=0.0426m

υ=cλ=3×108ms-10.0426m=70.4225×108s-1υ=70.4225×108s-1

For λ=0.1499m

υ=cλ=3×108ms-10.1499m=20.0133×108s-1υ=20.0133×108s-1

Calculating the vibrational partition function of CO2 at 500K with respect to each of the determined frequencies:

For υ=41.6667×108s-1

qv=kT

qv=(1.381×10-23JK-1)×(500K)(6.626×10-34Js)×(41.6667×108s-1)=4.3421×1022qv=4.3421×1022Let it beq1v

For υ=70.4225×108s-1

qv=kT

qv=(1.381×10-23JK-1)×(500K)(6.626×10-34Js)×(70.4225×108s-1)=7.3388×1022qv=7.3388×1022Let it beq2v

For υ=20.0133×108s-1

qv=(1.381×10-23JK-1)×(500K)(6.626×10-34Js)×(20.0133×108s-1)=2.0856×1022qv=2.0856×1022Let it beq3v

The total vibrational partition function of CO2 at 500K can be calculated as shown here:

qtotalv=q1v+q2vq3v=(4.3421×1022)+(7.3388×1022)+(2.0856×1022)=(4.3421+7.3388+2.0856)×1022=1.37665×1023

qtotalv=1.37665×1023

Hence, total vibrational partition function of CO2 at 500K is qtotalv=1.37665×1023.

(b)

Interpretation Introduction

Interpretation:

With the given data the total vibrational partition function of CO2 at 1000K has to be found.

Concept Introduction:

Partition function:

The partition function contains all the thermodynamic information about a system. Such information can be used to calculate thermodynamic properties such as the internal energy, entropy, and the Gibbs energy. In general, the molecular partition function gives an indication of the average number of states that are thermally accessible to a molecule at the temperature of the system.

The vibration partition function has the following expression.

qv=kTqv=Vibrationalpartitionfunction

h=Plank'sconstant=6.626×10-34Jsυ=frequency=79.1975×107s-1Determinedk=Boltzmannconstant=1.381×10-23JK-1T=Temperature=298KGiven

(b)

Expert Solution
Check Mark

Answer to Problem 12.5P

The total vibrational partition function of CO2 at 1000K has to be found as 2.7533×1023.

Explanation of Solution

Calculating the vibrational partition function of CO2 at 1000K with respect to each of the determined frequencies:

For υ=41.6667×108s-1

qv=kT

qv=(1.381×10-23JK-1)×(1000K)(6.626×10-34Js)×(41.6667×108s-1)=8.6842×1022qv=8.6842×1022Let it beq1v

For υ=70.4225×108s-1

qv=kT

qv=(1.381×10-23JK-1)×(1000K)(6.626×10-34Js)×(70.4225×108s-1)=14.6776×1022qv=14.6776×1022Let it beq2v

For υ=20.0133×108s-1

qv=(1.381×10-23JK-1)×(1000K)(6.626×10-34Js)×(20.0133×108s-1)=4.1712×1022qv=4.1712×1022Let it beq3v

The total vibrational partition function of CO2 at 1000K can be calculated as shown here:

qtotalv=q1v+q2vq3v=(8.6842×1022)+(14.6776×1022)+(4.1712×1022)=(4.3421+7.3388+2.0856)×1022=2.7533×1023

qtotalv=2.7533×1023

Hence, total vibrational partition function of CO2 at 1000K is qtotalv=2.7533×1023.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY