Introduction to Chemical Engineering Thermodynamics
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 12, Problem 12.36P

(a)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(a)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.095x1β=0.105

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by,

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.2 .

Rewrite the given equation of GE/RT as

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.2 as the overall composition of the system is 0.2 are:

  x1α=0.095x1β=0.105

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

(b)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is:

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are:

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is:

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is:

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(b)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.095x1β=0.205

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by,

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.3 .

Rewrite the given equation of GE/RT as:

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.3 as the overall composition of the system is 0.3 are:

  x1α=0.095x1β=0.205

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

(c)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are:

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is:

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(c)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.21x1β=0.29

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by,

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.5 .

Rewrite the given equation of GE/RT as:

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.5 as the overall composition of the system is 0.5 are:

  x1α=0.21x1β=0.29

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

(d)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are:

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is:

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is:

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(d)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.65x1β=0.05

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.7 .

Rewrite the given equation of GE/RT as:

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as:

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.7 as the overall composition of the system is 0.7 are:

  x1α=0.65x1β=0.05

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

(e)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are:

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(e)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.65x1β=0.15

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.8 .

Rewrite the given equation of GE/RT as:

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as:

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.8 as the overall composition of the system is 0.8 are:

  x1α=0.65x1β=0.15

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4. Show that the fraction, F, of the energy released from a supercritical chain reaction that originates in the final m generations of the chain is given approximately by F= 1 km provided the total number of generations is large.
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP    A solution containing 7.5% sulfuric acid by weight at 70 °F is concentrated to 45% by weight by evaporating water. The concentrated solution and the water vapor exit the evaporator at 170 °F and 1 atm. Calculate the rate at which heat must be transferred to the evaporator to process 1500 lbm/hr of the feed solution to the evaporator. It is recommended to use the enthalpy-concentration diagram for sulfuric acid from Chapter 8 of Felder's book or an enthalpy-concentration diagram for sulfuric acid found in another unit operations book or chemical engineering manual such as Perry's.
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP   Suppose that the system designed in problem 33 of the Thermodynamics II problem set from UAM-Azcapotzalco is relocated to another area near the sea, specifically, Ciudad del Carmen, Campeche. Recalculate the compressor-cooler system for the new environmental conditions. Make the considerations you deem logical in redesigning your system. Indicate the references or sources where you obtained your data.

Chapter 12 Solutions

Introduction to Chemical Engineering Thermodynamics

Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Homogeneous and Heterogeneous Equilibrium - Chemical Equilibrium - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=8V9ozZSKl9E;License: Standard YouTube License, CC-BY