Introduction to Chemical Engineering Thermodynamics
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 12, Problem 12.36P

(a)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(a)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.095x1β=0.105

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by,

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.2 .

Rewrite the given equation of GE/RT as

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.2 as the overall composition of the system is 0.2 are:

  x1α=0.095x1β=0.105

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

(b)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is:

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are:

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is:

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is:

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(b)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.095x1β=0.205

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by,

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.3 .

Rewrite the given equation of GE/RT as:

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.3 as the overall composition of the system is 0.3 are:

  x1α=0.095x1β=0.205

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

(c)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are:

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is:

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(c)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.21x1β=0.29

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by,

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.5 .

Rewrite the given equation of GE/RT as:

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.5 as the overall composition of the system is 0.5 are:

  x1α=0.21x1β=0.29

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

(d)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are:

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is:

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is:

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(d)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.65x1β=0.05

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.7 .

Rewrite the given equation of GE/RT as:

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as:

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.7 as the overall composition of the system is 0.7 are:

  x1α=0.65x1β=0.05

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

(e)

Interpretation Introduction

Interpretation:

For the given binary mixture, whether one or two liquid phases are present is to be determined. Also, their composition is to be calculated if two phases are present.

Concept Introduction:

The general equation for GE/RT to predict liquid-liquid equilibrium is

  GERT=x1x2(A21x1+A12x2) ..... (1)

Here, A12 and A21 are parameters.

The relationship for γ1 and γ2 deduced from the above equation of GE/RT are:

  lnγ1=[A12+2( A 21 A 12)x1]x22lnγ2=[A21+2( A 12 A 21)x2]x12 ..... (2)

For liquid-liquid equilibrium where two phases, α and β exists, the relationship between x1α, x1β, γ1α and γ1β is

  ln(γ1αγ1β)=ln(x1βx1α) ..... (3)

Also, the relationship between x1α, x1β, γ2α and γ2β is

  ln(γ2αγ2β)=ln(1x1β1x1α) ..... (4)

(e)

Expert Solution
Check Mark

Answer to Problem 12.36P

Two phases are present in the given system of binary mixture with phase composition as:

  x1α=0.65x1β=0.15

Explanation of Solution

Given information:

Excess Gibbs energy for a binary liquid mixture is given by

  GERT=2.1x1x2(x1+2x2)

Overall composition of the system is given as z1=0.8 .

Rewrite the given equation of GE/RT as:

  GERT=2.1x1x2(x1+2x2)GERT=x1x2(2.1x1+4.2x2)

Compare this equation by equation (1) so that the value of A12 and A21 are:

  A12=4.2A21=2.1

Let, the binary mixture contains two phases of liquid and the system is in liquid-liquid equilibrium. Now, use equations set (2) along with equations (3) and (4) to eliminate  γ1αγ1β, γ2α and γ2β and substitute the value of A12 and A21 as:

  4.2( ( 1 x 1 α )3 ( 1 x 1 β )3)=ln( x 1 β x 1 α )                                                   ...... (6)6.3( ( x 1 α )2 ( x 1 β )2)4.2( ( x 1 α )3 ( x 1 β )3)=ln( 1 x 1 β 1 x 1 α )                                              ...... (7)

The value of x1α and x1β which satisfy the above equations and lie between 00.8 as the overall composition of the system is 0.8 are:

  x1α=0.65x1β=0.15

At this point, there exist equilibrium between two phases for the given system.

Therefore, the assumption that the system is a two-phase system is correct and two phases are present.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q2/ An adsorption study is set up in laboratory by adding a known amount of activated carbon to six which contain 200 mL of an industrial waste. An additional flask containing 200 mL of waste but no c is run as a blank. Plot the Langmuir isotherm and determine the values of the constants. Flask No. Mass of C (mg) Volume in Final COD Flask (mL) (mg C/L) 1 804 200 4.7 2 668 200 7.0 3 512 200 9.31 4 393 200 16.6 C 5 313 200 32.5 6 238 200 62.8 7 0 200 250
مشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthe
4.59 Using the unilateral z-transform, solve the following difference equations with the given initial conditions. (a) y[n]-3y[n-1] = x[n], with x[n] = 4u[n], y[− 1] = 1 (b) y[n]-5y[n-1]+6y[n-2]= x[n], with x[n] = u[n], y[-1] = 3, y[-2]= 2 Ans. (a) y[n] = -2+9(3)", n ≥ -1 (b) y[n]=+8(2)" - (3)", n ≥ -2

Chapter 12 Solutions

Introduction to Chemical Engineering Thermodynamics

Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Homogeneous and Heterogeneous Equilibrium - Chemical Equilibrium - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=8V9ozZSKl9E;License: Standard YouTube License, CC-BY